a2 United States Patent

Schulzrinne et al.

US009413585B2

US 9,413,585 B2
*Aug. 9,2016

(10) Patent No.:
(45) Date of Patent:

(54) NETWORK TELEPHONY APPLIANCE AND
SYSTEM FOR INTER/INTRANET
TELEPHONY

(75) Inventors: Henning Schulzrinne, Leonia, NJ (US);

Jiangi Yin, Nepean (CA)

(73) Assignee: The Trustees of Columbia University
in the City of New York, New York, NY
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 258 days.

This patent is subject to a terminal dis-
claimer.

@
(22)
(65)

Appl. No.: 13/588,369
Filed: Aug. 17,2012
Prior Publication Data
US 2013/0016715 Al Jan. 17, 2013
Related U.S. Application Data

Continuation of application No. 12/468,707, filed on
May 19, 2009, now Pat. No. 8,271,660, which is a
division of application No. 09/980,885, filed as
application No. PCT/US00/40175 on Jun. 8, 2000,
now Pat. No. 7,610,384,

Provisional application No. 60/138,832, filed on Jun.
8, 1999.

(60)

(60)

Int. Cl1.
HO4L 12/66
HO04M 7/00

(51)
(2006.01)
(2006.01)

(Continued)

USS. CL
CPC ... HO4L 29/06095 (2013.01); GOGF 3/167
(2013.01); HO4L 29/08072 (2013.01);

(Continued)
Field of Classification Search

CPC ... HOA4L 29/06068; HO4L 29/08576;
HO4L 29/06095; HO4L 41/0806; HO4L 41/12;

(52)

(58)

HO4L 29/06027; HO4L 29/06326; HO4L
29/08072; HO04Q 2213/1324; H04M 7/006;
HO04M 3/567; GOGF 3/167
USPC 709/227, 220, 230, 379/38, 372, 219,
379/88.07;370/261, 353

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,572,678 A
5,647,002 A

11/1996 Homma et al.
7/1997 Brunson

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0256 526
EP 0939 522

2/1988

9/1999
(Continued)
OTHER PUBLICATIONS

U.S. Appl. No. 11/776,319, filed Oct. 12, 2012 Amendment and
Request for Continued Examination (RCE).

(Continued)

Primary Examiner — Lisa Hashem
(74) Attorney, Agent, or Firm — Baker Botts, LLP

(57) ABSTRACT

A network appliance (100) is provided having a network
controller subsystem (110) for coupling the appliance (100)
to a data network for providing and receiving data packets to
and from a packet data network. A digital signal processing
subsystem (120) is coupled to the network controller sub-
system (110). A signal conversion subsystem (130) is coupled
to the digital signal processing subsystem (120) and a user
interface subsystem (160) is coupled to both the signal con-
version subsystem (130) and the digital signal processing
subsystem (120). The digital signal processing subsystem
(120) operates under the control of a computer program
which is capable of detecting incoming calls, initiating call
sessions, and preferably, implementing advanced telephony
features.

8 Claims, 33 Drawing Sheets

1100\
1132 1134 1136 1138
/. y y .
; 7 7 rd r4
‘ Task1 ' I Task2 l | Taskn 1 l ﬁb%']:t';‘:g'q 1130
: Task
Level
I CTRX micro kernel |\1 120
Process
Level
{c_intos] [c_int(lg l { Rint0 l LLow-IeveI Functions | ~_14o
Software -2 i 7 7 ISR

£z

Hardware 1112 1114

- 4
1116 1118

Level

US 9,413,585 B2
Page 2

(51) Int.CL
GOGF 15/16 (2006.01)
HO4L 29/06 (2006.01)
GOGF 3/16 (2006.01)
HO4L 29/08 (2006.01)
HO4L 12/64 (2006.01)
HO4L 29/12 (2006.01)
(52) US.CL
CPC ...

(56)

5,675,507
5,742,905
5,748,736
5,757,798
5,778,187
5,867,495
5,892,535
5,893,091
5,903,559
5,909,183
5,990,883
6,009,469
6,011,579
6,034,621
6,075,796
6,085,101
6,088,659
6,101,180
6,108,706
6,119,007
6,125,113
6,199,068
6,266,339
6,275,574
6,337,858
6,360,265
6,434,143
6,493,324
6,529,501
6,564,261
6,597,686
6,608,832
6,614,805
6,625,258
6,665,727
6,671,276
6,690,663
6,701,366
6,707,797
6,741,575
6,763,020
6,782,412
6,795,444
6,826,173
6,839,323
6,842,505
6,850,496
6,898,188
6,912,278
6,970,909
7,006,616
7,016,343
7,046,780

H04129/08576 (2013.01); HO4L 12/6418

(2013.01); HO4L 29/06 (2013.01); HO4L
29/06027 (2013.01); HO4L 29/12009 (2013.01):
HO4L 29/12018 (2013.01); HO4L 29/12047
(2013.01); HO4L 61/10 (2013.01); HO4L 61/15
(2013.01); HO4L 65/1006 (2013.01); HO4L
65/1069 (2013.01); HO4L 69/08 (2013.01);

HO4L 2012/6486 (2013.01); HO4M 7/006

References Cited

U.S. PATENT DOCUMENTS

A 10/1997 Bobo, I

A 4/1998 Pepe et al.

A 5/1998 Mitra

A 5/1998 Hamaguchi

A 7/1998 Monteiro et al.
A 2/1999 Elliott et al.

A 4/1999 Allen et al.

A 4/1999 Hunt et al.

A 5/1999 Acharya et al.
A 6/1999 Borgstahl et al.
A 11/1999 Byrne et al.

A 12/1999 Mattaway et al.
A 1/2000 Newlin

A 3/2000 Kaufman

A 6/2000 Katseff et al.
A 7/2000 Jain et al.

A 7/2000 Kelley et al.

A 8/2000 Donahue et al.
A 8/2000 Birdwell et al.
A 9/2000 Chater-Lea

A 9/2000 Farris et al.
Bl 3/2001 Carpenter

B1 7/2001 Donahue et al.
Bl 8/2001 Oran

Bl 1/2002 Petty et al.

B1 3/2002 Falck et al.

B1 8/2002 Donovan

Bl 12/2002 Truetken

B1 3/2003 Zhao et al.

Bl 5/2003 Gudjonsson et al.
Bl 7/2003 Smyk

B2 8/2003 Forslow

B1 9/2003 Raahemi et al.
Bl 9/2003 Ram et al.

B2 12/2003 Hayden

Bl 12/2003 Bakre et al.
B1 2/2004 Culver

B1 3/2004 Kallas et al.
B1 3/2004 Gardell et al.
Bl 5/2004 Zhang et al.
Bl 7/2004 Hon

B2 8/2004 Brophy et al.
Bl 9/2004 Vo etal.

Bl 11/2004 Kung et al.

Bl 1/2005 Foti

B1 1/2005 Suder et al.
Bl 2/2005 Knappe et al.
Bl 5/2005 Hamami

Bl 6/2005 Hamilton

B2 11/2005 Schulzrinne
B1 2/2006 Christofferson et al.
B1 3/2006 Mermel et al.
B2 5/2006 Kwan

(2013.01)

7,054,820
7,139,797
7,167,912
7,216,348
7,257,201
7,266,091
7,296,091
7,406,073
7,433,954
7,478,148
7,483,400
7,610,384
7,653,081
7,840,681
7,890,749
8,027,335
8,041,822
8,169,937
8,189,570
8,271,660
8,890,925
2002/0049817
2004/0044791
2004/0255039

2005/0041646
2005/0207431

2006/0026288
2007/0115919

2007/0233896
2007/0274474
2008/0075261
2008/0112390
2008/0123627
2008/0130628
2008/0139210
2009/0310484
2010/0002690
2010/0008345
2010/0034200

2010/0088421
2010/0172342

2010/0309906
2011/0075669
2011/0263229
2012/0008495
2012/0076053
2012/0259993

2012/0275451
2013/0242942

2014/0007083
2014/0115129
2015/0117442
2015/0181033

2016/0050321

B2
Bl
Bl
Bl
B2
B2
Bl
B2
B2
B2
B2 *
Bl
B2
B2
B2
B2
B2
B2 *
B2 *
B2
B2 *
Al
Al
Al*

Al*
Al*

Al*
Al*

Al
Al
Al
Al*
Al*
Al
Al*
Al
Al
Al*
Al*

Al
Al*

Al*
Al*
Al*
Al

Al*
Al*

Al*
Al*

Al*
Al*
Al*
Al*

Al*

5/2006
11/2006
1/2007
5/2007
8/2007
9/2007
11/2007
7/2008
10/2008
1/2009
1/2009
10/2009
1/2010
11/2010
2/2011
9/2011
10/2011
5/2012
5/2012
9/2012
11/2014
4/2002
3/2004
12/2004

2/2005
9/2005

2/2006
5/2007

10/2007
11/2007
3/2008
5/2008
5/2008
6/2008
6/2008
12/2009
1/2010
1/2010
2/2010

4/2010
7/2010

12/2010
3/2011
10/2011
1/2012
3/2012
10/2012

11/2012
9/2013

1/2014
4/2014
4/2015
6/2015

2/2016

Potekhin et al.

Yoakum et al.

Dhingra

deCarmo

Singh et al.

Singh et al.

Dutta et al.

Gallant et al.

Dolinar et al.

Neerdaels

Kuusinen et al. 370/267

Schulzrinne et al.

Cannon

Acharya et al.

Tighe et al.

Ansari et al.

Hoshino et al.

Kuusinen et al. 370/267

Bessis oo 370/353

Schulzrinne et al.

Weiser etal. 348/14.08

Drory et al.

Pouzzner

Honeisen HO04L 29/06027
709/230

Punjetal.ccceeene 370/352

Monaiccooe... HO4L 12/6418
370/401

Acharyaetal. 709/227

Chahal HO04L 29/06027
370/352

Hilt et al.

Singh et al.

Ramanathan et al.

Kucmerowski et al. 370/352

Moreman HO04L 29/06027
370/352

Lin et al.

Gisby etal.cccoeenn 455/445

Sisalem et al.

Schulzrinne et al.

Lebizay G06Q 20/102
370/338

MeLampy HO04L 29/06027
370/352

Przybysz et al.

Boberg HO04L 65/1006
370/352

Ramachandran ... HO4L 12/6418
370/352

Punj ..o HO04L 29/06027

370/395.1

Gisby etal.cccoeenn 455/413

Shen et al.

Lazaridis et al. 370/259

Eidelman HO04L 12/2697
709/230

Jackson et al. 370/352

Stille ..oooverrrienen HO04L 65/1016
370/331

Baldwin HO04L 65/1016
717/178

Chaudhari HO04L 29/06027
709/221

Cicchino HO04L 65/1069
370/352

Keller HO04L 65/1016

455/404.1

Tassone H04M 7/0012

370/261

FOREIGN PATENT DOCUMENTS

JP
JP
JP
JP
JP
JP

61065555
63286044
7283815
9168063
9321914
10178497

4/1986
11/1988
10/1995

6/1997
12/1997

6/1998

US 9,413,585 B2
Page 3

(56) References Cited
FOREIGN PATENT DOCUMENTS

JP 11003072 1/1999
JP 11041294 2/1999
JP 11069024 3/1999
WO WO098/11704 3/1998
WO WO 98/39934 11/1998
WO WO 99/09732 2/1999
WO WO 00/76158 12/2000
OTHER PUBLICATIONS

U.S. Appl. No. 11/776,319, filed Jun. 4, 2013 Non-Final Office
Action.

U.S. Appl. No. 10/480,505, (Abandoned) Nov. 24, 2004.

U.S. Appl. No. 09/596,864, Sep. 28, 2007 Amendment and Issue Fee
payment.

U.S. Appl. No. 09/596,864, Aug. 13, 2007 Notice of Allowance.
U.S. Appl. No. 09/596,864, May 16, 2007 Response to Non-Final
Office Action.

U.S. Appl. No. 09/596,864, Apr. 9, 2007 Non-Final Office Action.
U.S. Appl. No. 09/596,864, Dec. 11, 2006 Response to Ex Parte
Quayle Action.

U.S. Appl. No. 09/596,864, Oct. 13, 2006 Ex Parte Quayle Action.
U.S. Appl. No. 09/596,864, Sep. 29, 2006 Response to Final Office
Action.

U.S. Appl. No. 09/596,864, Jul. 27, 2006 Final Office Action.

U.S. Appl. No. 09/596,864, May 2, 2006 Response to Non-Final
Office Action.

U.S. Appl. No. 09/596,864, Dec. 28, 2005 Non-Final Office Action.
U.S. Appl. No. 09/596,864, Oct. 6, 2005 Request for Continued
Examination (RCE).

U.S. Appl. No. 09/596,864, Sep. 15, 2005 Advisory Action.

U.S. Appl. No. 09/596,864, Aug. 29, 2005 Response to Final Office
Action.

U.S. Appl. No. 09/596,864, May 18, 2005 Final Office Action.
U.S. Appl. No. 09/596,864, Jan. 6, 2005 Response to Non-Final
Office Action.

U.S. Appl. No. 09/596,864, Sep. 3, 2004 Non-Final Office Action.
U.S. Appl. No. 09/980,885, Sep. 16, 2009 Issue Fee payment.

U.S. Appl. No. 09/980,885, Jun. 16, 2009 Notice of Allowance.
U.S. Appl. No. 09/980,885, May 20, 2009 Amendment and Request
for Continued Examination (RCE).

U.S. Appl. No. 09/980,885, Nov. 20, 2008 Final Office Action.
U.S. Appl. No. 09/980,885, Jul. 11, 2008 Response to Non-Final
Office Action.

U.S. Appl. No. 09/980,885, Jan. 11, 2008 Non-Final Office Action.
U.S. Appl. No. 09/980,885, Dec. 17, 2007 Amendment and Request
for Continued Examination (RCE).

U.S. Appl. No. 09/980,885, Nov. 15, 2007 Pre-Brief Appeal Confer-
ence Decision.

U.S. Appl. No. 09/980,885, Jul. 23, 2007 Pre-Brief Conference
Request and Notice of Appeal.

U.S. Appl. No. 09/980,885, Jan. 23, 2007 Final Office Action.

U.S. Appl. No. 09/980,885, Oct. 13, 2006 Response to Non-Compli-
ant.

U.S. Appl. No. 09/980,885, Sep. 25, 2006 Notice of Non-Compliant.
U.S. Appl. No. 09/980,885, Sep. 18, 2006 Response to Non-Compli-
ant.

U.S. Appl. No. 09/980,885, Sep. 6, 2006 Notice of Non-Compliant.
U.S. Appl. No. 09/980,885, Aug. 23, 2006 Response to Non-Final
Office Action.

U.S. Appl. No. 09/980,885, Apr. 21, 2006 Non-Final Office Action.
U.S. Appl. No. 10/085,837, Aug. 1, 2007 Issue Fee payment.

U.S. Appl. No. 10/085,837, May 31, 2007 Notice of Allowance.
U.S. Appl. No. 10/085,837, May 17, 2007 Response to Final Office
Action.

U.S. Appl. No. 10/085,837, Mar. 28, 2007 Final Office Action.
U.S. Appl. No. 10/085,837, Jan. 11, 2007 Response to Non-Final
Office Action.

U.S. Appl. No. 10/085,837, Sep. 20, 2006 Non-Final Office Action.

U.S. Appl. No. 10/085,837, Jun. 26, 2006 Response to Non-Final
Office Action.

U.S. Appl. No. 10/085,837, Mar. 20, 2006 Non-Final Office Action.
U.S. Appl. No. 10/333,352, Jul. 11, 2007 Issue Fee payment.

U.S. Appl. No. 10/333,352, Apr. 12, 2007 Notice of Allowance.
U.S. Appl. No. 10/333,352, Feb. 2, 2007 Response to Non-Final
Office Action.

U.S. Appl. No. 10/333,352, Aug. 30, 2006 Non-Final Office Action.
U.S. Appl. No. 10/380,138, Sep. 8, 2005 Issue Fee payment.

U.S. Appl. No. 10/380,138, Jun. 21, 2005 Notice of Allowance.
U.S. Appl. No. 10/380,138, Dec. 27, 2004 Response to Non-Final
Office Action.

U.S. Appl. No. 10/380,138, Jun. 22, 2004 Non-Final Office Action.
U.S. Appl. No. 10/480,505, Dec. 1, 2009 Notice of Abandonment.
U.S. Appl. No. 10/480,505, Oct. 14, 2009 Pre-Brief Appeal Confer-
ence Decision.

U.S. Appl. No. 10/480,505, May 26, 2009 Pre-Brief Appeal Confer-
ence Request and Notice of Appeal.

U.S. Appl. No. 10/480,505, May 1, 2009 Advisory Action.

U.S. Appl. No. 10/480,505, Apr. 22, 2009 Response to Final Office
Action.

U.S. Appl. No. 10/480,505, Feb. 12, 2009 Examiner Interview Sum-
mary.

U.S. Appl. No. 10/480,505, Feb. 3, 2009 Letter Requesting Interview
with Examiner.

U.S. Appl. No. 10/480,505, Nov. 26, 2008 Final Office Action.
U.S. Appl. No. 10/480,505, Aug. 28, 2008 Response to Non-Final
Office Action.

U.S. Appl. No. 10/480,505, May 30, 2008 Non-Final Office Action.
U.S. Appl. No. 10/480,505, Feb. 19, 2008 Advisory Action.

U.S. Appl. No. 10/480,505, Feb. 12, 2008 Amendment and Request
for Continued Examination (RCE).

U.S. Appl. No. 10/480,505, Jan. 29, 2008 Response to Final Office
Action.

U.S. Appl. No. 10/480,505, Oct. 31, 2007 Final Office Action.

U.S. Appl. No. 10/480,505, Aug. 15, 2007 Response to Non-Final
Office Action.

U.S. Appl. No. 10/480,505, May 15, 2007 Non-Final Office Action.
U.S. Appl. No. 11/776,319, Sep. 11, 2012 Advisory Action.

U.S. Appl. No. 11/776,319, Aug. 30, 2012 Applicant Iniated Inter-
view Summary.

U.S. Appl. No. 11/776,319, Aug. 13, 2012 Response to Final Office
Action.

U.S. Appl. No. 11/776,319, Apr. 12, 2012 Final Office Action.

U.S. Appl. No. 11/776,319, Jan. 19, 2012 Terminal Disclaimer
Review Decision.

U.S. Appl. No. 11/776,319, Aug. 16, 2011 Terminal Disclaimer and
Response to Non-Final Office Action.

U.S. Appl. No. 11/776,319, May 18, 2011 Non-Final Office Action.
U.S. Appl. No. 11/776,319, Mar. 4, 2011 Response to Non-Final
Office Action.

U.S. Appl. No. 11/776,319, Nov. 4, 2010 Non-Final Office Action.
U.S. Appl. No. 12/468,707, Aug. 17, 2012 Issue Fee payment.

U.S. Appl. No. 12/468,707, May 21, 2012 Notice of Allowance.
U.S. Appl. No. 12/468,707, Mar. 19, 2012 Response to Non-Final
Office Action.

U.S. Appl. No. 12/468,707, Dec. 19, 2011 Non-Fial Office Action.
U.S. Appl. No. 12/560,821, Jun. 8, 2012 Non-Final Office Action.
Almeroth et al., Using Satellite Links as Delivery Paths in the
Multicast Backbone (Mbone) WOSBIS 98, pp. 47-54, Dallas, Texas,
Oct. 30, 1998.

Ryu, Bo et al, Managing IP Services over a PACS Packet Network,
IEEE Network, Jul./Aug. 1998, pp. 4-10.

Handley M et al. “RFC 2543 SIP: Session Initiation Protocol”
19990301. 19990300, Mar. 1, 1999, XP015008326.

Peter Wilson, “Packet Network Proof,” Telephony Online, Mar. 22,
1999.

Kelly Carroll, “Internet Boosts Unified Messaging: Wireless Carriers
Turn to Web-Based Systems,” Telephony Online, Apr. 24, 2000.
““Killer App’ Is on The Loose: Unified Messaging Is a Key Service
Enabled by the Next-Generation Network,” Communication News,
Jan. 2000.

US 9,413,585 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Leonard Chong et al., “Towards a Unified Messaging Environment
Over the Internet,” Cybernetics and Systems, Sep. 1999.

Brian Quinton, “Microsoft, Sprint Offer Unified Messaging Prod-
uct,” Telephony Online, Jun. 14, 1999.

Richard Tarabour et al., “Manageable Messages,” Telephony Online,
Jun. 7, 1999.

R. Babbage et al., “Internet Phone—Changing the Telephony Para-
digm,” Internet and Beyond 231 (eds. S. Sim & J. Davies, 1998).

Susan Biagi, “IP Networks Now and Forever: Carriers Must Bridge
Packet, Circuit-Switched Networks,” Telephony Online, Oct. 12,
1998.

Rosenberg, et al., “SIP Extensions for Instant Messaging.” Internet
Draft, Internet Engineering Task Force, Jun. 2000.

Mahy, et al., “SIP Extensions for Messaging Waiting Indication.”
Internet Draft, Internet Engineering Task Force, Jul. 2000.

U.S. Appl. No. 13/035,309, Oct. 11, 2013 Non-Final Office Action.
U.S. Appl. No. 11/776,319, Nov. 20, 2013 Notice of Allowance.

* cited by examiner

US 9,413,585 B2

Sheet 1 of 33

Aug. 9,2016

U.S. Patent

g
=E||

N4

I 'Old

0¢ oc

A
—~ . A

M e

(NASI ‘SLOd) 8910A Payoms-3noUID

dl 18A0) 90I10A AHV 7e

. .
S ——
O aRoos Ied;

\-z¥

US 9,413,585 B2

Sheet 2 of 33

Aug. 9,2016

U.S. Patent

AN E

NV jsuisLyiy

99
<« femeen
0
N1Sd ol & JoUIBU
9~
JETNELS

[AS]

UOIIE)S SO

09

US 9,413,585 B2

Sheet 3 of 33

Aug. 9, 2016

U.S. Patent

dS1d

€ 'Oid

|000j0.14 18UIBy}y

\-2Z8
. dOHa | d| eV
s o Tog 18
4N
\-06
dld
26
LD - cwo dis
o T Yy 86
*o8

US 9,413,585 B2

Sheet 4 of 33

Aug. 9,2016

U.S. Patent

v "Old

18M0o NOY
ﬁroﬁ \ A
waysAsgng
MHOMIIN _ _ WwaisAsgng Buissaool4 : m
vivg. > 19]j0uU0D 5 | 29l |
JouleylS [BURIS | |
[endiqg i “
e
N ozl \o¢l 091

O/l

210WaY
$\gel
¥

US 9,413,585 B2

Sheet 5 of 33

Aug. 9,2016

U.S. Patent

G 'Old
omrJ
g ._ .. § T e e e e
| [Aiddng | N 3 vxg
1omog | | iayeadg SIN JospueH ann . g ped Aoy,
| hrmwr m ol -zl $col \p9l .59l
| N I 6
oA | ol | .
m m Jaydwiy m §seb | | foy
: ' oiph _ ; .
| m PV (a3 1 | | ¢ N
m m ~pEl : SINOID [+
m m m [eo1bo] e -
m : - vz} 8 A
W | 08p0d NOd m “azexyz
m | v/Q pue a/y | |] v
m m A F m X T .
w v liu----!!a?i------!--lN.mx,.u“ 4_ N 43 /:Nm_\
M oer 9/HOd [B_S |1 | 260028 L .
| [wpos], [=g |, [Jejonuo) m dSa “[naexyigzl
i | Spr v | L-esegol 9| leuwiayig | 1| WOY
| 91 Sk b Seudg Phze 8 Ny
... & alefoividutaiuns i felis paty el B P LRt
o~ —y 2/ Sng SSAIpPY 260y

6L 0617 ce/sngereqgeed gz,

US 9,413,585 B2

Sheet 6 of 33

Aug. 9, 2016

U.S. Patent

9'Old
demn Aroweur J8¢1
ey [PUISRGY MLE (OOBX0 000006%0
WYY paisiu] 116 00TX0 DORILEX0
19835 AIRMYOS WIDISAS 40&&8 }o0Yy |
‘onuos ‘mpydue oipne ‘peal pedAay 91 3Xp 0000TE%0
djjonuos Uy T OT*G Q00018%0
qaoisi O1x0 QOBOTXG
WOY 43821 (00gx0 Rl
edesy ("op) (xauy yiSusry $S2IPPY A4S

US 9,413,585 B2

Sheet 7 of 33

Aug. 9,2016

U.S. Patent

I
ald3 -
1-00/| ?) h h m,‘. 0a-2a
h m 80-G1Q
S mv 91a-€2a
.. >~ $za-led
WO 2-0011 e
gXMZE
WY
OV-9LY ON-b Ly
Pzvt | F<gor F o0z, FSpor !
\ OvV-£2V
06l 261 fmme
(/cﬁ

US 9,413,585 B2

Sheet 8 of 33

Aug. 9,2016

U.S. Patent

8 "9Old
V-0V e V-0V
1389y =« A
MOS8 = < LH
403 | > -« » 91(
d1NI - . CUI
03" Lal > 143 > ZIUl
OIYLaY > d » Ll ~-zzL
SO I < gd.180l
139 I« - M
039 |- < LIV-9LY
vzl
G1a-00 |« o §+a0a
OF606.NV CCI0CESINL
* 008

US 9,413,585 B2

Sheet 9 of 33

Aug. 9,2016

U.S. Patent

6 'Ol
oaL | OM10°\
oay |« W10
' ~ X310
3aL e ~ ¥S4
d1d3 Y.%m N2z
30Y | ~ XS4
vzl
aal i« XY
aay » Xa
€055 YL OW ZED0ZESNL
Kcom

US 9,413,585 B2

Sheet 10 of 33

Aug. 9,2016

U.S. Patent

0l 'OId

LIy 30 ste@u o] wod viecy COOTXD

CLYT 30 J1eu-1481r 107 Mod puemio]) | ZO0TX0

1130 Hry-yoy 108 pod viey 1000Z%0

QYT 30 Jreg-o1 fof wod puvunmoy) G00TX0
ades(y 382IPPY dSU

US 9,413,585 B2

Sheet 11 of 33

Aug. 9,2016

U.S. Patent

Ll "Olid

bLLL ZLL alemplen

OHENG | suonouny jenat-mor oI 601 o sour | |
ELEY |
$S900.14 L y Y y
0z~
[ouIsy} 001 XY 1D
Iy & X i
ELER |
NSBL Ty | A | A AN
0ELL~_ suojoun4 m
S enslybin Wisel oisel brseL | |
g8eLL 9ELL PELL 497

US 9,413,585 B2

Sheet 12 of 33

Aug. 9,2016

U.S. Patent

¢l "Oid
1obeuepy 1obeuepy 1ebeuepy
Bulinpayog Jsel be|4 Jusag
. paAejaq slwi-jeay
\-92z) Tzl Zz71
X1dD
-0zhL
l(ocu_.

U.S. Patent

Aug. 9,2016

Sheet 13 of 33

Function Name Function
o e P Ao oo b emeantesoreict e ma e e T e
ARPinit) {Initialization Function)
ARP table initialization,
c_intPl {initialization Function}
Main progratn, initialize the stack pointer,
extemnal bus interface, and interrupt vector for
TMSI20032.
DMA_initialize(} {Initialization Function)
Initialize the DMAD and DMA] channels,
ENET initializeq) | (Initialization Function)
initialize the Ethernet controlier,
InitHardWaref) {Inftialization Function)
Initislize the TimerD, Timerl and serial port.
Namelnit(d {Initialization Function)
_ Initialize some SIP headers and SDP body.
SeriatPordnit} {Initialization Function)
Initialize the serial port.
ARF _In_task() Parse ARP input packets
ARP Tvmner _rask(} ARP timer, maintain the ARF table
Call_task{} Call processing,
Clock_tasky) A clock generates the hour, minute, and second
Codec_task(} A taskto call encoding, decoding, ring generation,
tone generation or memory foop, |
CreaieSipCall() Create 3 SIP request packet for a call
Erev_task{} Ethernet packet receiver and IP de-multiplexiog.

FIG. 13A

US 9,413,585 B2

U.S. Patent Aug. 9,2016 Sheet 14 of 33 US 9,413,585 B2

Fupcrion Name Function
R A e e N e PO T~ M B2 e HN s A e e AN oAb o b 00

IP_Send_task(} IP muitiplexing and Ethernet pacicet sending.

Key_task() Key pad monitor and input.
| RTP _In_task(} RTP processing.
Sendiof} Send UDP packets to given IP address.
Serring_rask(} Senting the E*Phone parameters,
SIP_In_task(} Accept SIP packets, and update call and SIP status.
“SIP sty SIP status transition task |
Tong_task{} Counrd the active and stop duration for tone or ving,. ‘

L UDP_In pask() Accept UDP packets

ARP_ Oz {High-level function}

ARP request program
ClearScreent) {High-ievel function}

_ Ciear all Hines on the LLD

CodecConfig) {High-level function)

Schedule a coden task according to the run mode

parameter
Displ} {High-leve] funcson)

Dispiay a string on the LCD screen
LD {High-level function)

o Display a character on the LCIY screen

LCDClear) {High-level function)

Ciear one jine on the LOD screen

Linear¥olllaw(j {Righ-level function)
Linear data to u-law data conversion

FIG. 13B

U.S. Patent Aug. 9,2016 Sheet 15 of 33 US 9,413,585 B2

Function Name Function
A n “m ""'“"'mmwmw—w&*—ﬂm
Initialization{} {High-level function)

Call initializavion fimction and pre-schedule tasks
RTP _para_init() {High-level function)

Generate the random time stamp and SSRC for a
RTP session

ScreenScrollf) {High-level function)

Scroll the LCD screen for one line upward or
downward

SDPParse(} {High-level function)
Parse SDP packets

SIPParse(} {High-level function)
Parse SIP packets

| SIP_Request(} (High-level function)
Create SIP request messages

SIP_Response(} (High-level function)
Create SIP response messages

SpeechDecode(} (High-ievel function)
Speech demding

SpeechEncode() {High~level function)
Speech encoding

- ToneGenerate(} {High-level function)
Generates dial tone, ring back tone, busy tone or

alert tone.

FIG. 13C

U.S. Patent Aug. 9,2016 Sheet 16 of 33 US 9,413,585 B2

Function
— e T ———— At iSSP oIS
Function prototypes

Header {ile

Supervisor (kernel)

Trap Manager source file

FIG. 13D

U.S. Patent

Aug. 9, 2016 Sheet 17 of 33
v ware
Function Name Function
e_im30 Ethernet controller ISR. Triggered op INT3 of
TMS3200C32 by external interrupt from
AM79C940, _
c_im09¢ System timer ISR, Triggered on TINT! by
internal imer} of TMS320C32,
Rint0(} A/D and D/A ISR, Triggered on RINTO by
internal serial port Interrupt of TMS320C32.
AmpControlf) {Low-level function)
Control the speaker volume.
DMALG {Low-level function}

Start the DMAY channe},

DMAG Release(

{Lowlevel function)
Start the DMAGO channel.

DMA_int_setg)

{Low-level function)
Enable INTI and INT2 for DMAO and DMAL

ENET reset(}

{(Low-level function)
Reset the Ethernet conmroller.

ENET disablef)

(Low-Jevel function)
Disable the Ethermnet controllsr,

- HardSetf) (Low-lavel function)
Control the handset and hands-free switching,
HookSiate) {Low-level function)
Check the hook state,
Keyv} {Love-level function)
Key pad check and read.
KeyMap(} {Low-level function)
Map the key binary input to ASCIT format,
LCDCmdl {Low-level function)

LCD control command,

FIG. 13E

US 9,413,585 B2

U.S. Patent Aug. 9,2016 Sheet 18 of 33

US 9,413,585 B2

Funciion Name Funstion
et e e oo e oot oSS oo Wbt e oo et
LCDWrite() | (Low-leve! function)
: Write display data to LCD.

RintEnable (Low.level function)

Enabie the RINTO for Rint0 ISR.
RimDisoablef} {Low-level function)

Disable the RINTO.
SerialPortRstf} - (Low-level Rimnction)

Raset the serial port.
TimerEnablet} {Low-level function)

Enable the system timer TCLK .
TimerDisablet) (Low-leve! function)

Disable the gvstem timer TCLK].

FIG. 13F

U.S. Patent Aug. 9,2016 Sheet 19 of 33 US 9,413,585 B2

1402
(ARP Start)

1404\ Y

Check the local
ARP_table to find the
expected MAC and IP

address

1410~ 1493\ 4
1. Allocate a new entry
2. Enqueue the request : I MAC
by IP_Send_task Poronater
3. Return an entry 5 Return 'OK’

Handle

-
%

1412 v
(End)

FIG. 14

US 9,413,585 B2

U.S. Patent Aug. 9,2016 Sheet 20 of 33
1502
No
No

IP Addr is
This Host

1512\

Check the local ARP_table to find the
correspond entry

1514

found Yes

1508
»(return)

?

1518~ No
Add a new entry in the ARP_table

1. Copy the new MAC
addr to the entry
2. Setnew TTL

I

1522~

Copy the Mac to the target
MAC variable

|
o

No

this a request

ARP
?

: Yes
Place a ARP reply

j
etk

1526~

1528

FIG. 15

US 9,413,585 B2

Sheet 21 of 33

Aug. 9,2016

U.S. Patent

syoed

018 'diY ‘dl _uiey3
mN_wmv_omamo / 9ziayoed

91 'Ol

o091

sj@yoed d
xs|dinaq / xadpinpy

001

sieoed Jeuiaylg
BAI809Y [JlWisuBl |

\-209

Buissanold d|

\zi€l

U.S. Patent

struet ENetHeader {

Aug. 9,2016

Sheet 22 of 33 US 9,413,585 B2

* Erhernst header structure */

ETA Dest; /* Ethernet destination MAC address ¥/
ETA Svurce; #* Source MAC address ¥/
int Type; /* Ethernet packet type */
33
struct IPHeader § * TP header structure ¥/
int VI_ToS; /* IP version, header length, and service type ¥/
int Length; # total length ¥/
imt Identify; 7* identifier of the IP packet ¥/
int FragDf: /* flags and fragment offset */
int TTL_Protocol; * time«o-live, and protocols */
int ChkSum; * checksum ¥/
IPA Sotree; f* source 1P address */
iPA Dest; /% destination IP address */

¥

struct UDPHeader {

% UDP header strocture ¥/

int 8Port; M source port X/

int DPort; /* destination port ¥/

int Length; * UDP message leagth ¥/

int ChkSum; £ UDP checksum */
| s

struct EPACKET { /* Ethernet receive packet structure ¥/
struct ENetHeader Enh; /2 Ethornet header */
struct IPHeader Iph; /% IP header ¥/
struct UDPHeader Uk, 7* UDP header *¢
ot data[MaxUDPLength]; 7 data field %/

FIG. 17

US 9,413,585 B2

Sheet 23 of 33

Aug. 9,2016

U.S. Patent

8l '9OId

Odid Pees3
JUISUBI| 481jonuoo 1ayng Buiznaxoed
Bulaylg WING Buipuag Jeulsulg
Jowaylg
0z8lL o8l leung Lywg “visk
ananb jndino di
LD
Yibus| ejep
Jaod 824nos
adA; jooojoud
F
ddv dan dly
9081 ~, 081 2081
a|ge} ayden iayng J8ynq indu
ddv ddn olpny
a|gey die Byngdan isjngepoousy

/ocw_.

US 9,413,585 B2

Sheet 24 of 33

Aug. 9,2016

U.S. Patent

6l "'Old _
a|qey die NgaoHdan Ingeponyseadg
siqe1 ayoeo die layng aAigoal 1ayng
ddn indino olpny
P16l 016}
Buixsjdnnw-sp
48ngq OVING
AdY3
Jayng Jajlonuod \ m\mmn“m
Buinleney ovwa /* 1909y
JPulaylg Bulayly

\-9061 061

US 9,413,585 B2

Sheet 25 of 33

Aug. 9,2016

U.S. Patent

g0¢ Old

yseL Qv

pug Joyng —»
layng (ingapods()
18)UI04 JuaLINy —+ oMo | J8yng
Jeung = ndino
5 5 Jeddn \ /&OON olpny
uluuibag Jajng > youmg Buod-Buig Ny
2002 _/ ngva ! ! 0102
vo0¢ 'Old
swiaydg ajepdn Jeyng a/v (e)
ysel ay \QNODN
«— puzJBYNg
(sngapoou3) laying uday
layng 1OMOT L 12)UI04 JuBLNg
nduy : Joung
olpny $002 1 laddn
T youmg Buod-Buig «—— Bujuuibeg Jayng

ingav /mmoom

fccom

U.S. Patent Aug. 9,2016 Sheet 26 of 33 US 9,413,585 B2

N
—
o
(=]

Digit input

1 1
1 i
| |
I I
! 1
i i
! i
I ;
) !
! i
i] i
I

: 1 1
1 : 1
t i
' 21 ! i
| 06 ¥ : ¥ 2116 1
} .]
! Getdigit - ----- I (Talk !

!

[|
) 1
| i
' !
i |
I]
I i
I !
) |
i)
t !
I !
)]
1 I
; !
I i
I

/)'\
Digit complete ,,/’ T SIP_Connected
2108 Lo SIP_Ring ™~_ 2118
SIP_Refused
! SIP_Busy 2120
————————— Message ———— e
On Hook J 2110

FIG. 21

U.S. Patent Aug. 9,2016 Sheet 27 of 33 US 9,413,585 B2

Keys RemmmVaiue
Digst kevs 0, Y
Special keys ** and 8
Enter key e =N

Hands Free gy

Readie] key ‘R’

Upward 'U’
Dowprward iy

struct FuncKey {
WORD Enter;
WORD Redial;
WORD Up;
WORD Down;
WORD Dugit;
WORD Fuli;
WORD Enable;
WORID Touch;
WORD Al

3

FIG. 22

Enter key
Redial key
Up arrow key
Down arrow key
digit keys or spevial key
key buffer full
when set, indicates key mnput is enabled
any key was pressed
an aiphabetic key was pressed,

FIG. 23

U.S. Patent Aug. 9,2016 Sheet 28 of 33 US 9,413,585 B2

Port Read | Bit bit7 | bHS | bied § bitd | bud | b bitl bl
address Write | Value
Gxea0601 1 W 10 TR TR ix | Soft | Volume | BNEL | Hand
reset | lock ralease | free

GxRIOY | W 1 X % » X x udock | ENET | Hard

resst e 4
OxB30001 | R 0 X X ES X X Nokey {x Hook
input off
(xE30001 1 R i X X % X x Kev X Hook
touched on

struct Message { /* x structure for all messages in the 8IF Phone ¥/
it ENetXmtST, /* Ethernet transmission packet state ¥/
int ENetRovS8TO; /* Ethemet recetving packet state */
int ENetRovST1; /* Ethernet receiving packet state ¥/
it ENetRovST2; /* Ethernet receiving packet state */
int ENetRevST3; /7% Ethemnet receiving packet state ¥/
tnt RevFlag; 7% The receiving speech data is available when SET */

int ARPST, 7* reserved ¥/

FIG. 25

U.S. Patent Aug. 9,2016 Sheet 29 of 33 US 9,413,585 B2

typedef struct {
int pt.7 /* payload type ¥/
it ml /* marker bit ¥/
int ocid * CSRC eoumt */
int x:1 /* header extension flag */

int p:l #* padding flag ¥/
nt version:2 /* protocol version */

int seq 7* sequence number ¥/
int tsl /* timestamp least significant 16 bits ¥/
iny ts2 /* timestamp most significant 16 bits %/

nt ssrel * Synchronization source least significant 16 bits ¥/
intssre2 /* Synchronization source most significant 16 hits %/
it esref1] /% optional CSRC list address */

} RTPHeader;

FIG. 26
struct ToneType {
int ActiveTime; The period for sound is active
int AetiveCnt; The counter for the sound during the active time
int StopTimel; Tirst sound stop period
int StopCntl; First sound stop counter
int StopTime2; Second sound stop period
nt StopCnt2; Second sound stop counter
}
FIG. 27
Active Stop Active Stop
Time Timel Time Tina2

FIG. 28

U.S. Patent Aug. 9,2016 Sheet 30 of 33 US 9,413,585 B2

typedef struat |
chay *s5@
short lens

} stsing;

rypedef enum
Inirial,
Proceeding,
Failure,
Sucress,
Cenfimed,
Lalling,
LCallProg,
Completead,
Bye

} Tstate;

typedaf strucgt |
method L method;
short statuay
string urly
string wviay
string callid;
sLring contact)
string from:
string from display:
string subjisan;
string to;
snring te _displayy
string bs;
sHring reason;
content_t contentiype;
int contentlength;
unsigned cseg;
string hody:
sdp_t sdp;

} mussage o

wypedet stract |
int flag:
int wa_state)
int status:
message T wmgi
shay * udp:
char * local;
sockaddr peer;
sdp € adpy
Tarare state;
int tl:
inr €2;

}osall;

:)’-g«
i
£

¢
P -

fw
TR
i
f‘ﬂ
£
F
i
f-r

fw

/w
¥

F&d
!*
{‘*
T4
jir
/w
i+
f*
fab
Fad
f-i

FA

i

7 &

4
£*
!‘R

i
'

7 e
Fad
for
A
f‘#

'fi

Fa
7w
¥

string type used in meswage_t structure */

start of string */
Jengrh of suring */

state rransition strusture %/

SIP imitial state, VAT or UAS */
procegeding ¢f the request, UAS ¥/
failure, URS */

success, UAS */

confirmed, UVAS */

calling, UAC */

call proveeding, UAC */
completed, URC */

Bye stave, UAC arx UAS ¥/

S5IF message strucltuyre

request: method; response: {0 */
response: stabtus value; reguast: € */
reguest URL */

via header */

Call«IDp */

contact header %/

From address *7

From «display name */
Subject *7

To address */

Yo display name =/
timestamg */

response reason phrase */
zonbtact type heagder */
contact length */
sagueanse number ¥/

SDF body 4/

sessron description */

call structure ¥/

SEY for effective; RESE! for clear */
Ney eurrent call:0z UAS:Y: UAS:2 */
current response status ¥/

SIF messags */

receive SIP packsts pointer /7

UAC requsst packet pointer */

pear host IF sddress */

sdp hackup */

SIP transition state */

TL timer */

T2 timer ¥/

FIG. 29

U.S. Patent Aug. 9,2016 Sheet 31 of 33 US 9,413,585 B2

3000
Y 3002

__

Initial

INVITE

Give upor7
Packets Sent

3008 |
Status]
ACK 200,72
ACK Give up
CANCEL 3012
Status T1 *2”@ =
ye oo >
ACK BYE F200,T2]
| Call Finish |
Event 3010 _BYE _ a
Request Sent ! i
e Status>200
FI1G. 30
Message received SIP_Status
100 SIP Trying
18x SIP_Ring
200 SIP _Connected
3xx SIP Redirect
dxx, Sxx SIP_Refused
8xx SIP Busy

FIG. 31

U.S. Patent Aug. 9,2016 Sheet 32 of 33 US 9,413,585 B2

3205

-------------------------------- I D

INVITE
%X CANCEL BYE
3210 200 200
Status Change INVITE
1xx 1xx
Failure T Picks up 7 >
status L1GKS LD
INVITE * INVITE
Status [3220 Maxg;u‘f: 12) Status

Event
Message sent Onhook | >
BYE 3230
w»yN -~ 1
T1*2 " Bye) >
BYE \ ‘,—2°

- 200 or T2

US 9,413,585 B2

U.S. Patent Aug. 9,2016 Sheet 33 of 33
3325
PROXY REDIRECT Lo
SERVER
3320
PACKET NEYWORK
JNTERNET, INTRANET, ETHERNET)
20 WITH NETWORK
FELEPHONY SOFTWARE M
AND SUITABLE I3
NETWORK TELERHONY
APPLIANCE
100 NETWORK TELEPHONY \
AEPLIANGE
100

X\
7

,/
S

i

SENSORS Liaﬂsaas
331035 3310&'3;‘ 3310¢

FIG. 33

o e et

US 9,413,585 B2

1

NETWORK TELEPHONY APPLIANCE AND
SYSTEM FOR INTER/INTRANET
TELEPHONY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of application Ser. No.
12/468,707, filed May 19, 2009, now U.S. Pat. No. 8,271,660
which is a divisional of application Ser. No. 09/980,88S5, filed
Dec. 3, 2001, now U.S. Pat. No. 7,610,384, which is a
National Stage of International Application No. PCT/US00/
40175 filed Jun. 8, 2000 which claims priority from Provi-
sional Application Ser. No. 60/138,832 filed Jun. 8, 1999,
each of which are herein incorporated by reference in their
entirety.

FIELD OF THE INVENTION

The present invention relates in general to the field of
Internet and intranet telephony. More particularly, the present
invention relates to a network telecommunications appliance
and system for Internet/Intranet communications.

BACKGROUND OF THE INVENTION

Over recent years, the Internet has evolved from a conve-
nient additional means of communications to an essential
communication tool in the business, technical and educa-
tional fields. In this regard, a growing segment of the Internet
relates to Internet telephony which provides a number of
advantages over conventional circuit-switched network con-
trolled by a separate signaling network. For one thing, parties
are allowed to more easily select and use encoding and other
data compression techniques that are most appropriate for
their quality needs. Parties may, for example, decide that for
international calls, they would trade lower cost for full toll
quality, while a reporter calling in her story to a radio station
may go for full FM quality with little regard for price. Even
without quality degradation, 5.3 kb/s (G.723.1) to 8 kb/s
(G.729) are sufficient to support close to toll quality as
opposed to 64 kb/s for conventional landline telephone net-
works. This flexibility also has the advantage that during
severe network overload, e.g., after a natural catastrophe,
telephone customers can still communicate at about 3 kb/s,
thus increasing network capacity twenty-fold.

While it is logical to extend telephony services to existing
data networks, such as the Internet, because of the intelli-
gence required in the end systems, cost poses a major disad-
vantage. Previously, it has been difficult to build packet voice
“telephones” requiring no external power that operate over
low-grade twisted pair wires several miles long at the cost of
a basic analog phone.

In addition, the majority of known Internet telephony prod-
ucts are designed to operate in accordance with the H.323
signaling and control protocol. The H.323 protocol is a com-
plex protocol which is difficult to use and implement. As a
result of this complexity, different implementations of H.323
devices may be adversely affected by compatibility issues. In
addition, devices operating under the H.323 protocol cannot
communicate directly with one another, calls must be pro-
cessed and routed by a telephony server.

According, there remains a need for a network telephony
appliance which is low cost, operates using a simple signaling
protocol and offers a vast set of advanced telephony features.

SUMMARY OF THE INVENTION

The afore described limitations and inadequacies of con-
ventional telephone systems and known Internet telephony

10

15

20

25

35

40

50

55

60

65

2

systems are substantially overcome by the present invention,
in which a primary object is to provide a packet-based voice
communication system for use over the Internet and intranet
telecommunications networks.

It is another object of the present invention to provide a
packet data telephony appliance for use over a data network,
such as an Ethernet network,

It is still another object of the present invention to provide
a communication protocol for use in a packet-based telecom-
munication system.

It is yet another object of the present invention to provide
an Internet protocol architecture which supports telephony
and other continuous-media or streaming media services such
as “Internet radio” and “Internet TV’

Itis yet another object of the present invention to provide a
low cost, stand alone network telephony appliance capable of
direct calling of another network telephone station or indi-
rectly calling another network telephone station party, such as
through a redirect server.

In accordance with a first embodiment of the present inven-
tion, a network packet data telephone apparatus is provided
that includes: a network controller, such as an Ethernet con-
troller subsystem, coupled to a data network for providing
and receiving data packets to and from the network. A digital
signal processing subsystem is coupled to the network con-
troller subsystem and operates under a computer program for
detecting incoming calls, initiating call sessions and imple-
menting telephony features. A signal conversion subsystem is
coupled to the digital signal processing subsystem for con-
verting digital packet information into analog signals and vice
versa. A user interface subsystem is coupled to both the signal
conversion subsystem and the digital signal processing sub-
system for providing user control and feedback to the appa-
ratus. This stand alone network telephony device is referred to
herein as a network telephony appliance.

Preferably, the computer program of the network tele-
phony appliance implements the Session Initiation Protocol
(SIP). In this ease, aunique SIP address is associated with the
device and session initiation and control are performed in
accordance with the SIP protocol.

The network telephony appliance preferably implements
high level telephony functionality including a monitoring
feature, call forwarding, streaming audio mode, caller log,
callee log and the like.

Preferably, the network telephony appliance includes sen-
sor interface circuitry for receiving signals from remote
sources, such as sensors. The signals received from the
remote sources axe processed by the network telephony
appliance and sent to an appropriate network destination.

In another aspect of the present invention, a communica-
tion protocol is provided for use in a packet-based telecom-
munication system, the communication protocol having: an
Ethernet protocol layer; an Internet Protocol (IP) layer
stacked on top of the Ethernet protocol layer for interfacing
with the Ethernet protocol layer; an Address Resolution Pro-
tocol (ARP) layer stacked on top of the Ethernet protocol
layer for interfacing with the Ethernet protocol layer and the
IP layer, and for translating IP addresses into Media Access
Control (MAC) addresses; a User Datagram Protocol (UDP)
layer stacked on top of the ARP and IP layers for interfacing
with the ARP and IP layers and for providing real-time trans-
port of application data and controls within the telecommu-
nication system; a Real-Time Transport Protocol (RTP) layer
stacked on top of the UDP layer for interfacing with the UDP
layer and for providing real-time audio data transport within
the telecommunication system; one or more control protocol
layers stacked on top of the UDP layer for interfacing with the

US 9,413,585 B2

3

UDRP layer and for signaling and providing registration of the
real-time audio data; and one or more application protocols
stacked on top of the RTP layer for interfacing with the RTP
and for formatting the real-time audio data.

In another aspect of the present invention a network tele-
phony system architecture is provided. The system includes
at least two network telephony devices, such as a the present
network telephony appliance and/or a general purpose per-
sonal computer (PC) with suitable interface circuitry and
software to operate the PC as a network telephone. A redirect
server is also provided which is coupled to the data network
along with the network telephony devices. In the system, the
network telephony devices can directly address one another
to establish a real time audio connection. Alternatively, the
redirect server can be accessed by the network telephony
devices in order to identify, locate, and initiate a call session
with a called party. The redirect server can also be used to
implement high level telephony functions, such as call for-
warding, multi-party calling, voice mail and the like.

Further objects, features and advantages of the invention
will become apparent from the following detailed description
taken in conjunction with the accompanying figures showing
illustrative embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

For a complete understanding of the present invention and
the advantages thereof; reference is now made to the follow-
ing description taken in conjunction with the accompanying
drawings in which like reference numbers indicate like fea-
tures and wherein:

FIG. 1 is a illustrative diagram of a telecommunications
system featuring a conventional circuit-switched voice net-
work operatively coupled to a voice packet network;

FIG. 2 is a block diagram of a packet data network tele-
phone system;

FIG. 3 is a diagram showing a protocol stack for telephony
devices operating on the packet data network telephone sys-
tem of FIG. 2;

FIG. 4 is a block diagram of a preferred hardware archi-
tecture of a network telephony appliance in accordance with
the present invention;

FIG. 5 is a block diagram further illustrating the network
telephony appliance of FIG. 4;

FIG. 6 is an exemplary memory map for the DSP of the
network telephony appliance of FIG. 5;

FIG. 7 is a block diagram of a memory interface for the
DSP of the network telephony appliance of FIG. 5;

FIG. 8 is a block diagram of a network controller interface
for the DSP of the network telephony appliance FIG. 5;

FIG. 9 is a block diagram of a codec interface for the DSP
of the network telephony appliance of FIG. 5;

FIG. 10 is an exemplary memory map for the DSP of FIG.
5 showing a mapping of the LCD control interface to DSP
memory addresses;

FIG. 11 is a block diagram showing the software architec-
ture for the network telephony appliance of FIG. 4;

FIG. 12 is a block diagram showing the scheduling mecha-
nisms of the process level software of FIG. 11;

FIGS. 13A-F are tables illustrating exemplary task defini-
tions for software operations of a preferred method of oper-
ating the Packet data network telephone in accordance with
the hardware and software architectures of FIGS. 4 and 11;

FIG. 14 is a flow diagram of an ARP request output proce-
dure in accordance with the hardware and software architec-
tures of FIGS. 4, 11 and 13;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 15 is a flow diagram of an ARP request input proce-
dure in accordance with the hardware and software architec-
tures of FIGS. 4, 11 and 13;

FIG. 16 is a diagram showing the IP processing steps in
accordance with the hardware and software architectures of
FIGS. 4, 11 and 13;

FIG. 17 is a list of exemplary Ethernet transmit data struc-
tures according to the software architecture of FIG. 11;

FIG. 18 is a data flow diagram of a packet sending proce-
dure in accordance with the hardware and software architec-
tures of FIGS. 4, 11 and 13;

FIG. 19 is a data flow diagram of a packet receiving pro-
cedure in accordance with the hardware and software archi-
tectures of FIGS. 4, 11 and 13;

FIGS. 20A and 20B show the A/D and D/A “ping-pong”
buffer scheme used by the software of the present network
telephony appliance;

FIG. 21 is a state transition diagram of the Call_task pro-
cess of the present network telephony appliance;

FIG. 22 is chart defining the key pad values for the pre-
ferred embodiment of the Packet data network telephone of
FIG. 5;

FIG. 23 is a data structure illustrating key state definitions
for the preferred embodiment of the present network tele-
phony appliance of FIG. 5;

FIG. 24 is a mapping of the I/O parallel port of the network
telephony appliance of FIG. 5;

FIG. 25 is a data structure defining the Ethernet controller
states of the network telephony appliance of FIG. 5;

FIG. 26 is an exemplary RTP header structure for RTP
packet processing used in the network telephony appliance
network telephony appliance of FIG. 5;

FIG. 27 is a data structure for use with a tone generation
function of the Packet data network telephone of FIG. 5;

FIG. 28 is a timing diagram for the tone generation func-
tion of the network telephony appliance of FIG. 5;

FIG. 29 is a list of data structures used for processing the
SIP_task requests or responses in accordance with the net-
work telephony appliance of FIG. 5;

FIG. 30 is a state transition diagram illustrating the net-
work telephony appliance operating as a client (initiating a
call) in accordance with FIG. 5;

FIG. 31 is list of SIP_task responses in accordance with the
network telephony appliance of FIG. 5;

FIG. 32 is a state diagram illustrating the state transition
diagram of a SIP UAS in accordance with the network tele-
phony appliance of FIG. 5; and

FIG. 33 is a block diagram which illustrates part of a packet
data network telephony system including one or more net-
work telephony appliances in accordance with the present
invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is a block diagram which shows a telecommunica-
tions system having conventional telephony and packet tele-
phony components. As shown in FIG. 3, the system includes
a circuit-switched voice network 20 coupled to a packet net-
work 30 via a first gateway 12. The figure shows at least three
possible interactions between Internet telephony and a con-
ventional “plain old telephony service” (POTS) system:
“end-to-end” packet delivery; “tail-end hop off” delivery; and
local packet delivery. With “end-to-end” packet delivery, end
systems such as network computers, dedicated Internet
phones or personal computers (PCs) are used to packetize
audio and deliver audio packets to one or more similar end
systems for playback. With “tail-end hop off” delivery, packet

US 9,413,585 B2

5

networks are used for long-haul voice transmission, while
standard circuit-switched voice circuits are used for connect-
ing customer premise equipment (CPE), i.e., standard analog
telephones, to the packet telephony gateways. “Tail-end hop
off” can be used both for individual voice circuits as well as
for PBX interconnects, and allows for the bypassing of con-
ventional long-distance services as well as the interconnec-
tion of POTS equipment to packet-based audio end systems.
With local packet delivery, voice data is generated by packet
audio end systems, but carried as circuit-switched voice over
leased or public facilities.

FIG. 2 shows a preferred embodiment of an packet data
network telephone system 50 according to the present inven-
tion. The packet data network telephone system includes: an
Ethernet LAN 52, Ethernet phones 54, 56, and 58, a worksta-
tion 60, a server 62 and a Ethernet gateway 64. The Ethernet
phones are network devices, which can take the form of stand
alone devices, such as a network appliance, or a personal
computer system with audio input and output peripherals and
operating under the control of an appropriate computer pro-
gram. With such an packet data network approach, voice data
traffic is packetized proximate the end user. The packet data
network telephony system of FIG. 2, for example, can include
several dozen homes, offices or apartments that are connected
to a plurality of Ethernet gateways (only one shown in FIG.
2), each of which is located within the CAT-3S cabling dis-
tance limit of 328 feet from the network termination unit. The
gateways can, in turn, connect through optical fiber to the
neighborhood switch (not shown), or connect directly to the
Public Switched Telephone Network (PSTN) via lines 66 as
shown in FIG. 2. This architecture has the advantage that a
mix of low-bandwidth and high-bandwidth customers can be
accommodated without running additional wires. Since
switch costs are dominated by interface counts rather than
bandwidth, this mechanism offers much higher per-user
bandwidth (particularly peak bandwidth), yet switching costs
are similar to today’s telephone networks. In the architecture
of FIG. 2, each network device includes a network address
and each device can directly access every other network
device via the network address. While a specialized server
may be desirable to implement certain features, it is not
required to establish a call session, i.e., point to point data
communications between two or more network devices.

The use of a packet data network LAN 52 is advantageous
in that it is a relatively inexpensive solution where conven-
tional PC interfaces and network hardware can be used. The
Packet data network LAN 52 can be operated over a variety of
media and allows for the easy addition of more devices on a
multiple-access LAN. Gateway 64 can be a single DSP that
acts as a simple packet voice module and that implements
DTMEF recognition for user-to-network signaling.

FIG. 3 is a block diagram which illustrates a packet data
network protocol stack diagram for providing Internet tele-
phony and other continuous-media (“streaming media™) ser-
vices such as “Internet radio” and “Internet TV”” As known
and understood by those skilled in the art, a “protocol” is
generally a set of rules for communicating between comput-
ers. As such, protocols govern format, timing, sequencing,
and error control. The term “stack” refers to the actual soft-
ware that processes the protocols and thus allows the use of a
specific set or sets of protocols. The diagram shown in FIG. 3
shows how the various protocols are interrelated in accor-
dance with the present invention.

The protocol stack 80 of FIG. 3 incorporates a number of
layered protocols including: a base protocol 82 for providing
basic Ethernet message format and timing information; an
Address Resolution Protocol (ARP) 84 for interfacing with

10

15

20

25

30

35

40

45

50

55

60

65

6

the base protocol 82 and for translating IP addresses into
Media Access Control (MAC) addresses; an Internet Protocol
(IP) network layer 86 for interfacing with the base protocol
82; a optional Dynamic Host Configuration Protocol (DHCP)
88 for interfacing with the base protocol 82; and a User
Datagram Protocol (UDP) 90 for interfacing with the ARP 84,
IP 86 and DHCP 88 protocols and for real-time transport of
application data and controls. The protocol stack 80 further
includes the following application-specific protocols for cod-
ing speech information: a Real-Time Transport Protocol
(RTP) protocol 92 for real-time audio data transport, wherein
the RTP protocol 92 generally interfaces with the UDP 90 and
modulation, speech codec and control applications 94, 96 and
98, respectively. The application protocols 94 and 96 can take
several forms, such as the G.711 pulse code modulation and
the (G.723 speech codec protocols, respectively. In addition,
the Real Time Streaming Protocol (RTSP) layer 97 can be
included to provide enhanced performance in streaming
media applications. Control protocol 98 is used for session
initiation and signaling and preferably takes the form the of
the Session Initiation Protocol (SIP).

As shown in FIG. 3, RTP is the preferred protocol for
transporting real-time data across the Internet. See H.
Schulzrinne, S. Casner, R. Frederick and V. Jacobson, “RTP:
A Transport Protocol for Real-Time Applications,” Request
for Comments (Proposed Standard, RFC 1889, Internet Engi-
neering Task Force (January 1996) which is hereby incorpo-
rated by reference in its entirety. RIP is a “thin” protocol
providing support for applications with real-time properties,
including timing reconstruction, loss detection, security and
content identification. In addition, RIP provides support for
real-time conferencing for large groups within an intranet,
including source identification and support for gateways,
such as for audio and video bridges, and multicast-to-unicast
translators. RTP offers quality-of-service feedback from
receivers to the multicast group as well as support for the
synchronization of different media streams.

In FIG. 3, the combined stack of the IP, UDP and RTP
protocols 88, 90 and 92 add 40 bytes to every packet for
low-speed links and highly compressed audio, and 20 bytes
for 20 ms of 8 kb/sec. audio. Thus, header compression is
desirable.

As noted above, the protocol stack 80 of FIG. 3 preferably
employs the Session Initiation Protocol (SIP) for establishing
multimedia exchanges with one or more parties. Instead of
using telephone numbers, SIP uses addresses in the form
user@domain or user@host. This address, for example, can
be identical to a person’s e-mail address.

SIP provides the standard PBX or CLLASS functionality,
such as call forwarding, call waiting, caller M, call transfer,
“camp-on,” “call park,” and “call pickup.” “Camp-on” allows
an attendant-originated or extended call to a busy single-line
voice station to automatically wait at the called station until it
becomes free while the attendant is free to handle other calls.
“Call park” allows a user to put a call on hold and thenretrieve
the call from another station within the system. “Call pickup”
allows stations to answer calls to other extension numbers
within a user specified call pickup group. Many of these
features actually require no signaling support at all, but can be
implemented by end system software. SIP is designed as a
variant of HTTP/1.1, which allows easy reuse of HI TP secu-
rity and authentication, content labeling and payment nego-
tiation features.

SIP further employs a calendar-based call handler. The
call-processing software accesses a user’s personal appoint-
ment calendar and answers the phone accordingly. The user
can define categories of callers and preset, based on the cal-

US 9,413,585 B2

7

endar entry, whether and where their calls are forwarded. The
information released to the caller if calls are not forwarded
may range, for example, from “is currently not available” to
“John Smith is in a meeting until 3 p.m. in Room 5621 with
Jane Doe,” depending upon the caller’s identity. The call
handler can also be integrated with a call processing lan-
guage, a state-based scripting language that allows to con-
struct voice-mail systems or automatic call handling systems
in a few lines of code. The call handler also manages the
translation between ISDN calls and Internet telephony calls.

FIG. 4 is a high-level hardware block diagram showing a
preferred embodiment of an packet data network telephone
100 according to the present invention. As will become appar-
ent throughout this disclosure, the device 100 is a relatively
low cost interface product to place voice and data onto a
packet data network, such as Ethernet LAN’s, intranets and
the Internet. Therefore, the device 100 will generally be
referred to as a network appliance to reflect the broad appli-
cability of this stand alone device.

The network appliance 100 provides audio and video com-
munications across a local area network (LAN), Internet or
other Ethernet network, and generally includes: a network
(e.g., Ethernet) controller subsystem 110; a digital signal
processing subsystem 120; a signal conversion subsystem
130; and a user interface subsystem 160 coupled to both the
signal conversion subsystem 130 and the digital signal pro-
cessing subsystem 120. The telephone 100 further includes a
power supply, ROM 142 and RAM 152. The user interface
subsystem may include a speaker 161, a microphone 162 and
otheruser controls 169 as discussed below and with reference
to FIG. 5. Interface circuitry 135 for data acquisition and
control functions can also be coupled to the signal conversion
subsystem 130. Alternatively, such /O circuitry can be
directly coupled to DSP 120.

The network controller subsystem 110 is interposed
between the DSP 120 and the external data network and as
such provides and receives data packets to and from the data
(Ethernet) network. The Ethernet controller subsystem 110
also instructs the digital processing subsystem 120 to accept
data received from or to provide data to the Ethernet network.
In addition, the network controller subsystem can act as an
initial gatekeeper by rejecting and discarding corrupted or
unwanted data packets received from the Ethernet network.

FIG. 5 is a block diagram which illustrates the present
network appliance in further detail. As shown in FIG. 5, a
preferred embodiment of the network controller subsystem
110 includes an Ethernet controller 112, a service filter 114
(10Base-T transformer) and at least one RJ-45 socket 116.
Among other things, the network controller subsystem 110
performs the following functions: interfacing the network
appliance to the Ethernet network; sending and receiving
Ethernet packets; informing the DSP subsystem 120 to accept
the data when the data is available from the Ethernet; receiv-
ing the packets from the DSP subsystem 120 and sending
same to the Ethernet; and rejecting and discarding unwanted
packets from the Ethernet.

As shown in FIG. 5, the Ethernet Controller 112 is prefer-
ably the AM79C940 Media Access Controller for Ethernet
(MACE) available from Advanced Micro Device (AMD).
The MACE device is a slave register based peripheral. All
transfers to and from the system are performed using simple
memory or I/O read and write commands. In conjunction with
a user defined DMA engine, the MACE chip provides an
IEEE 802.3 interface tailored to a specific application.

Individual transmit and receive FIFOs decrease system
latency and support the following features: automatic retrans-
mission with no FIFO reload; automatic receive stripping and

10

15

20

25

30

35

40

45

50

55

60

65

8

transmit padding; automatic runt packet rejection; automatic
deletion of collision frames; direct FIFO read/write access for
simple interface to DMA controllers or I/O processors; arbi-
trary byte alignment and little/big/medium memory interface
supported; and 5 MHZ-25 MHZ system clock speed.

Referring again to FIG. 5, the digital signal processing
subsystem 120 includes a digital signal processor (DSP) 122
and related logical circuits, which include a read-only
memory (ROM) 142, a random access memory (RAM) 52,
and a erasable programmable logic device (EPLD) 124. The
digital signal processing subsystem 120 provides the follow-
ing functions: digital signal processing, such as speech com-
pression; call progress tone generation, and ring signal gen-
eration; general “glue” logic to interconnect DSP, memory
and 1/O devices; network protocol processing; call flow con-
trol and finite-state-machine implementation; keypad activity
detection and decoding; and display control.

As shown in FIG. 5, the DSP 122 used in a preferred
embodiment of the network appliance can be any suitable
commercially available DSP, such as Texas Instruments’
TMS320C32. The TMS320C32 DSP has the following fea-
tures: parallel multiply and arithmetic logic unit (ALU)
operations on integer or floating-point data in a single cycle;
general-purpose register file; program cache; dedicated aux-
iliary register arithmetic units (ARAU); internal dual-access
memories (512 double words); two direct memory access
(DMA) channels; one serial port; two timers; one external
memory port; and a multiple-interrupt structure.

In addition, the TMS320C32 DSP includes four external
interrupts and six internal interrupt resources. The external
interrupt can be triggered directly by the external pins. The
internal interrupt can be triggered by programming the indi-
vidual peripherals, such as serial port, DMA controller, and
timers. In addition, all these interrupt sources can be pro-
grammed as the DMA channel interrupt via CPU/DMA
enable register, IE. The TMS320C32 DSP also includes a
flexible boot loader which enables the main control program
for the network appliance automatically loaded from one of
three different external memory spaces or the serial port,
whichever is appropriate as determined by the activity of the
external interrupts of INTO to INT3 when the DSP 122 is
initialized, such as at powered on.

The DSP 122 is generally configured to include the follow-
ing resource assignments. External interrupts include: INTO:
“System boot from 0x1000” indication. when the system is
powered on and int0 is active, the DSP will boot the program
from external memory space 0x1000; INT1: DMAO external
interrupt signal, used for receiving packets from the network
controller 112; INT2: DMA1 external interrupt signal, used
for sending packets to the network controller 112; INT3:
AM79C940 packet state and error message interrupt. A
sample DSP memory map for use in an embodiment of the
present network appliance is shown in FIG. 6.

Referring again to FIG. 5, the present network appliance
has the user interface subsystem 160 which includes: a key
encoder 166, a liquid crystal display (LCD) 164 and a hand
set 163, which includes a keypad 165, a microphone 162 and
a speaker 161. The user interface subsystem 160 components
allow user interaction with the network appliance by provid-
ing the following functions: user interface for input (keypad)
and output (LCD); voice interface; ring alert output through
speaker; and handset or hands-free (microphone and speaker)
communication alternative. Through this interface 160 user
commands are entered and audio is sent and received to the
user.

In addition, the LCD can have buttons adjacent to the
display, such as on the side and below. The function of these

US 9,413,585 B2

9

buttons can operate as “soft keys” the function of which
depends on the current state of the system. For example, when
not answering calls, the display can shown a quick dial list
and the time of day. In addition, after calls have gone unan-
swered or been forwarded to voice mail, the display shows
can show a list of received calls. During the call, any other
incoming calls are displayed, allowing the subscriber to
switch between calls or bridge the call into the existing call.

Alternatively, the user interface 160 of the present network
appliance 100 can be configured with a small touch screen
(not shown) to replace or supplement the LCD display and
buttons. The touch screen, which graphically displays avail-
able functions and operations and responds to user contact on
the display, provides an enhanced user interface, such as for
the entry of alphanumeric network addresses and other tele-
phony operations.

FIG. 5 also shows the signal processing system 130, which
includes PCM encoder and decoder that performs analog-to-
digital (A/D) and digital-to-analog (D/A) conversion, and an
audio amplifier 134 coupled to the handset and the corre-
sponding speaker 161 and microphone 162. Also provided is
a power supply for providing positive and negative 5V volt-
age levels from a single AC or DC power supply adapter
(“wall wart”). In the preferred embodiment of FIG. 5, nega-
tive voltage levels are required by the LCD 164 and the PCM
codec 132.

FIG. 7 is a block diagram which illustrates a memory
interface 700 suitable for use in the network appliance of FIG.
5. The memory interface 700 includes external memory mod-
ules 142 and 152, which themselves include 128 Kbyte of
read-only memory (ROM) 142 for program storage and at
least 32 Kbytes of double word (32 bit) static random access
memory (RAM) 702, 704, 706 and 708. Due to the relatively
slow speed of the ROM 142, it is preferable that the network
appliance initializes the main program from the ROM and
stores this program in the relatively fast RAM for run time
execution.

FIG. 8 is a block diagram that shows an exemplary inter-
face between the DSP 122 and the Ethernet controller 124 in
accordance with a preferred embodiment of the present
invention. The 32 registers of the Ethernet controller 124 are
memory mapped at the 0x810000 memory space of the DSP
122 as shown in FIG. 6. Preferably, the first two registers are
receiving and transmitting “first in, first out” (FIFO) queues.
The DSP 122 exchanges the data with the Ethernet controller
124 via a 16 bit data bus 802.

FIG.9is a schematic diagram which illustrates an interface
between the DSP 122 and the PCM codec 132 in accordance
with a preferred embodiment of the present invention. As
shown in FIG. 9, the DSP 122 connects to the PCM codec 132
via an internal serial port 902. The serial port on the DSP 122
is an independent bidirectional serial port.

As shown in FIG. 5, the DSP 122 is also operatively
coupled to the LCD 164. The LCD control interface is
mapped at the DSP addresses shown in FIG. 10. In one
embodiment of the present invention, the LCD 164 is a 120x
32 pixel LCD such as the MGLS-12032AD LCD, manufac-
tured by Vazitronics. Since the access speed of the LCD is
generally slow, data displayed by the LCD can be mapped
into the STRBO (1X1000) memory space of the DSP 122,
which is the same memory space as ROM memory space.
Preferably, the LCD timing logic is the same as the timing
logic for the DSP 122. However, when the LCD is composed
of a left-half and a right-half] such as in the MGLS-12032, it
is necessary to control and program for both of halves of the
LCD when displaying an entire line message.

20

30

40

45

50

55

10

FIG. 11 is a block diagram showing the software architec-
ture for the present network appliance. As shown in FIG. 11,
the processing architecture for the present network appliance
is generally organized into three levels; the ISR (Interrupt
Service Routine) level 1110; the operating system or Process
level 1120; and the application or Task Level 1130. An exem-
plary list of functions and tasks which can be performed at
each of the software levels is provided in FIG. 13,

The lowest level, the ISR level 1110, includes interrupt
handlers and I/O interface functions. The ISR level 1220
serves as the interface between the process level 1120 and the
network appliance hardware shown in FIGS. 4 and 5.

Above the ISR level 1110 is the process level 1120, or
operating system, which is preferably a real-time multitask-
ing micro-kernel, such as StarCom’s CRTX Embedded Real-
time micro-kernel. Generally, the process level software 1120
(micro-kernel) performs memory management, process and
task management, and disk management functions. In a pre-
ferred embodiment of the present invention as shown in FIG.
12, the micro-kernel supports three scheduling mechanisms:
a Real-time Event Flag Manager 1222; a Delayed Task Man-
ager 1224; and a Scheduling Manager 1226. The micro-ker-
nel has three separate queues for the three different mecha-
nisms above, respectively.

The Real-time Event Flag Manager 1222 is used to trigger
the execution of real-time events by way of setting flags. If a
flag is set to an “ON” condition, the task associated with the
flag is immediately executed. For example, an interrupt ser-
vice routine would set a particular flag when a certain event
occurred. Flag events are entered on a flag queue with an
associated task address.

The Delayed Task Manager 1224 is responsible for timed
events. A timed task, such as a fail-safe or “watchdog” task,
can be executed after a certain time delay. If a certain event
does not occur within a certain time frame, the timer triggers
the task causing it to be executed. Another example is the
repeated execution of a task controlled by a periodic timer. In
an exemplary embodiment, there are 10 timer entries. Each
timer is loaded with a tick count and is then decremented on
every timer tick from the hardware’s interval timer. When the
count reaches zero, the task associated with the timer is
scheduled on the task queue. The Scheduling Manager 1226
scans the task schedule queue looking for scheduled tasks.
Upon discovery of an entry in the queue, control is passed to
a scheduled task.

FIGS. 13a-f are tables which list exemplary software tasks
and functions which can be part of the task level software
(FIGS. 13a-¢), process level software (FIG. 13d) and ISR
level software (FIGS. 13e-f). For the purposes of the present
invention, the terms “task” and “function” as referred with
respect to the software architecture are considered to be syn-
onymous. However, “tasks™ are generally executed by the
Scheduling Manager 1226, whereas “functions™ are gener-
ally called by tasks or other functions. The application tasks,
such as the call processing (Call_task) and IP processing
(IP_Send_task and Ercv_task, etc.) tasks, are scheduled by
the Process level software 1120. The execution of such tasks
is aresult of a prior scheduling by an ISR, another task, or by
the current task itself.

FIGS. 13 A-F illustrate exemplary function and procedure
definitions called in an event driven operation performed by
the present packet data network telephone software of FIG.
11. The functions, which are called on the occurrence of
various events, enable operation of the packet data network
telephone/system and include gross operations such as: ini-
tializing the Packet data network telephone/system; process-
ing ARP data; encoding voice data; processing message data;

US 9,413,585 B2

11

processing IP data; decoding voice data; transferring analog
and digital data to and form corresponding buffers; and per-
forming “watchdog” functions.

Initialization of the packet data network telephone appli-
ance includes the steps of hardware initialization and task
scheduling. After power on, the DSP 122 will automatically
transfer the main program from the ROM 142 to the RAM 152
(boot operation). Hardware initialization occurs in a tradi-
tional manner, including the steps of: initializing the stack
pointer, external bus interface control register, global control
register of the DSP, interrupt vector for the ISR, and the like.

After completion of the hardware initialization and pre-
liminary task scheduling, processing control is returned to the
process level (micro-kernel) 1120. The CRTX micro kernel
1120 and the scheduled tasks then control further processing.

Referring again to FIG. 13a, the task level software of the
present network appliance includes Address Resolution Pro-
tocol (ARP) processing. ARP is a known TCP/IP protocol
used to convert an IP address into a physical address (called a
Data Link Control (DLC) address), such as an Ethernet
address. A host computer wishing to obtain a physical address
broadcasts an ARP request onto the TCP/IP network. The host
computer on the network that has the IP address in the request
then replies with its physical hardware address.

FIG. 14 is a flow diagram illustrating of an ARP request
output procedure 1400, ARP_Out(). As illustrated in FIG. 13
B, ARP_Out() is a component of the task level software
which receives an IP address to be resolved, and outputs a
corresponding MAC address. When a ARP request begins
(step 1402) the ARP_Out() function first checks the
requested IP address from a local ARP cache table, arptable
(step 1404). If the corresponding entry is RESOLVED at step
1406, then ARP_Out() copies the MAC address from arpta-
bie to the requested parameter and returns a ARPOK status
flag (step 1408). Otherwise, the procedure will allocate an
entry inthe arptable and schedules a ARP request (step 1410).
As further shown by step 1410, a MAC address, i.e., “handle.”
of the arptable is returned to the main program (c_int00()).
According to the handle, the software then checks the corre-
sponding entry’s ae_state.

FIG. 15 is a flow diagram of an exemplary ARP request
input procedure 1500, ARP_In_task() which is a component
of the task level software listed in FIG. 13 A. The ARP_In_
task receives an ARP packet, and either modifies the arptable
or queues an ARP reply if the incoming packet is an ARP
request. When receiving an ARP packet (step 1502) the soft-
ware will check whether the packet’s ARP hardware or pro-
tocol types match (step 1504). If the types do not match,
control is returned to the main program (step 1506). If one or
both of the types match, then the software checks if the
destination host is the present host (step 1510), lithe destina-
tion host is not the present host, then control is returned to the
main program (step 1508).

As further shown in FIG. 15, if the destination host is the
current host, then the ARP_In_task next checks the ARP table
to determine whether there is a corresponding ARP entry for
the incoming packet (step 1512). If an entry is found (step
1514), then the new MAC address is copied into the existing
entry and modifies the entry’s “Time to Live” (TTL) to a new
value (step 1516). A TTL is understood by those with skilled
in the art to be a field in the Internet Protocol (IP) that specifies
how many more hops a packet can travel before being dis-
carded or returned to the sender. However, if there is no such
MAC entry is found in accordance with step 1513, then the
ARP_In_task adds a new MAC entry in the ARP table (step
1518). If the MAC entry is in a PENDING state (step 1520),
it is then changed to a RESOLVED state and the MAC

5

10

15

20

25

30

40

45

50

55

60

65

12

address is copied to the target entry (step 1522). If the incom-
ing ARP packet is an ARP request from another host, an ARP
reply packet is sent by queuing the IP_Send_task, steps 1524
and 1526. Control is then returned to the main program (step
1528).

In addition to the ARP input and output processes, ARP
processing at the task level includes an ARPTimer_task(),
which is a delayed loop task used to maintain the ARP entry
table arpentry. Nominally, the ARPTimer_task() is generated
once per second. The main purpose of the ARPTimer_task()
is to decrease the “Time to Live” (TTL) of the ARP entry and
to reseed the ARP request during the pending state in case the
previous ARP request is lost.

Task level processing can also include processing opera-
tions associated with the coding and decoding of audio pack-
ets. The Codec_task generally includes a SpeechEncode()
function, which encodes speech data from the ADBuf buffer
to the EncodeBuf according to the algorithm indicated by
“type” parameter. The coded data is then sent out via the
queue IP_Send_task, with the “RTP” parameter set.

Task level operations can also include Internet protocol
(IP) processing. The general IP processing operations are
illustrated in the block diagram of FIG. 16. As shown in FIG.
16, 1P processing includes the steps of: transmitting and
receiving Ethernet packets, step 1602; multiplexing and de-
multiplexing IP packets, step 1604; and packetizing and de-
packetizing Ethernet, Internet Protocol (IP), User Datagram
Protocol (UDP), Real-Time Transport Protocol (RTP) and
Address Resolution Protocol (ARP) packets, step 1606.

In accordance with step 1602 of FIG. 16, Ethernet packet
transmission can be performed using direct memory access
(DMA) channels of the Ethernet controller 112. DMA is a
technique for transferring data from main memory to a device
without passing it through the CPU. Since DMA channels can
transfer data to and from devices much more quickly than
with conventional means, use of DMA channels are espe-
cially useful in real-time applications, such as the present
network telephony system.

The network controller 110 preferably supports a plurality
of DMA channels, such as the DMA1 channel of the Ethernet
controller 112 that can be used for packet transmission. When
an Ethernet packet is ready for transmission, the DMA1()
function, an ISR level function, is called by setting the source
address (Ethernet packet buffer, ESend), destination address
(Ethernet controller’s transmit FIFO), and a counter (the
packet length). Examples of Ethernet transmit data structures
are provided in FI1G. 17. The DAM1() function then starts the
DAMI1 channel. When the counter reaches zero, the DAM1
stops and waits for the next call.

FIG. 18 is a block diagram which shows the data flow
between an audio input buffer 1802, a UDP buffer 1804 and
ARP table 1806 to the Ethernet interface (Ethernet Transmit
FIFO) of the Ethernet network controller 112. As further
shown in FIG. 18, data from the audio input buffer 1802, the
UDP buffer 1804 and the ARP table 1806 is sent to an IP
output queue 1810, and is arranged to indicate the protocol
type, source pointer and data length. Instead of queuing the
sending data, the IP_Send_task is queued by process level
software (micro-kernal) 1120. The protocol types supported
by the IP_Send_task generally include UDP, RTP, ARP_RE-
QUEST, ARP_REPLY. IP_Send_task is used for packet
transmission and Ethernet packetizing. Preferably, [P_Send_
task is scheduled by other tasks or functions such as SIP_task,
ARP_Out(), SpeechEncode(), etc. Once the IP_Send_task is
run, it checks the protocol type of the data. This task then
encapsulates the output data into the corresponding Ethernet

US 9,413,585 B2

13
packet in the ESend buffer. Finally, the packet is sent out via
the assigned DMA channel (DMA1).

FIG. 19 is a data flowchart further illustrating packet
receiving and de-multiplexing operations. The de-multiplex-
ing is realized by scheduling different tasks for different
protocols in the Ercv_task. In further accordance with step
1602 of FIG. 16, Ethernet packets are received in the receive
data FIFO memory (step 1902) and are further processed by
a DMAO channel controller (step 1904). Since the DSP 122
doesn’t know when the packets will arrive, the DMAO chan-
nel is active all the time (i.e., it does not stop even the counter
reaches zero). When a packet arrives, the DAMO channel will
automatically copy it from the Ethernet controller’s receiving
FIFO to the Ethernet receiving buffer, Ercv (step 1906). The
DAMO channel stops when there is no data available in the
FIFO.

ERcv_task is a flag trigger task for Ethernet packet de-
packetizing and IP packet de-multiplexing (step 1908). The
Ercv_task functions as follows: first, a PacketCheck() func-
tion is called to check the incoming packet. The Packet
Check() will return the protocol type of the packet, or NULL
if the packet is invalid. Second, depending on the returned
protocol type, the ERcv_task will trigger the different tasks to
process the received packet, RTP_In_task for “RTP” packet
(step 1910), ARP_in_task for “ARP” packet (step 1912) or
UDP processing tasks (step 1912) for UDP packets, for
example.

Referring to FIG. 13 C, SpeechDecode() is a voice decod-
ing function associated with the RTP processing of step 1910.
First, a SpeechDecode() task checks if there are data avail-
able in the decoding buffer, DecodeBuf. If data is available,
e.g., RevFlag is SET, then SpeechDecode() decodes it
according to the data type of receiving data, PCM (G.711),
(G.723, G.729, for example. The decoded data is sent into the
D/A buffer, DABuf.

The A/D and D/A interrupt routine can be triggered by an
internal interrupt source, e.g., Rint0(). Preferably, the A/D
and D/A interrupt routine is triggered by an 8 kHz sampling
frequency provided by the DSP. Since this routine is called
frequently, Rint0() is preferably written in assembly lan-
guage. The steps performed by Rint0() include the steps of:
reading a D/A sample from D/A buffer, DABuf, sending the
sample to the serial D/A port; obtaining a sample from the
serial A/D port; saving the A/D sample to an A/D buffer,
ADBAuf, and incrementing A/D and D/A buffer pointers,
ADPnt and DAPnt, by one.

FIGS. 20A and 20B are block diagrams which show an A/D
and D/A “ping-pong” buffer scheme used by the software of
the present invention. Further, if the current A/D pointer value
(ADPnt) exceeds a predetermined buffer threshold (ADTh)
then a flag is set in the flag task queue indicating that service
is required.

The A/D and D/A buffers can be divided into two parts, the
upper buffer 2002a and lower buffer 20025, respectively.
Both buffers can be designed as circular buffers. In this way,
when the current pointer reaches the buffer bottom, it wraps
around to its beginning. However, from the encoder and
decoder point of view, it is used as a two-frame ping-pong
buffer (defined as upper frame and lower frame) scheme. The
operation of this process is shown in FIGS. 20A and 20B. For
A/D conversion, when the upper (or lower) is full, the data in
the upper (or lower) bufter will be passed through ping pong
switch 2004 and copied to the speech encode buffer, Encode-
Buf2006. For D/A conversion, if the upper (or lower) buffer
is completed, a new frame of data will be copied from the
speech decode buffer, DecodeBuf, 2010 to the upper 2008a
(or lower 20085) buffer. This mechanism ensures that while

20

35

40

45

14

the encoding (or decoding) algorithm reads (writes) from one
part of the bufter, the A/D (or D/A) sampling ISR can write
(read) the other part of the buffer without conflict.

FIG. 21 is a state transition diagram of a Call_task subrou-
tine used in an exemplary embodiment of the present network
appliance. Call_task is a looped task which handles the call
procedure. As shown in FIG. 21, the “Idle” state 2102 occurs
when there is no call being made and there is no incoming
call. When this condition exists, the Call_task loops in the
“Idle” state 2102. The “DialTone” state 2104 exists when the
receiver state is OFFHOOK, or the handset state indicates
HANDSFREE, and thus the Call_task state will change from
the “Idle” state 2102 to the “DialTone” state 2104 when a
OFFHOOK or HANDSFREE condition exists. These states
are generally entered by an input by a user through the user
controls 160 indicating that a call is to be initiated. When the
Call_task state is in the Dial Tone” state 2104, the Codec_task
will be configured as “ToneMode, DialTone” and a dial tone
is sent to the handset components of the user interface 160.

Referring again to FIG. 21, while in the “DialTone” state
2104, if any digit key (‘0. .. ‘9’, “*> and ‘#’) or the radial
button is pressed, the call state changes from the “DialTone”
state 2104 to the “GetDigit” state 2106. In the “GetDigit”
state 2106, the dial tone is stopped at the handset.

After the callee’s number has been input and an ENTER
button has been pressed by the user to indicate that dialing is
complete, the Call_task will check if the input is valid. If the
number is valid, a call entry is created by a function Create-
SipCall() and the Call_task will go into a “SIP” state 2108.
Otherwise, if the input number is invalid, the number is
requested again and the state remains at the “GetDigit” state
2106.

While waiting for SIP_task processing, several decisions
may be made depending on the “SIP” state 2108. The “SIP”
state 2108 is a global variable, SIP_status, which is modified
by the SIP_task according to its state transition. If the “SIP”
state 2108 changes into SIP_Ring, the Call_task will change
to the “RingBack” state 2114 and the Codec_task will be
configured as “ToneMode, RingBack” mode. When the
Codec_task is in the “ToneMode, RingBack™ mode, a ring
back tone is sent to the handset.

From the “SIP” state 2108, if the “SIP” state 2108 changes
to SIP_busy, the Call_task and thus the call will change into
“BusyTone” state 2120 and the busy tone will be played at the
handset. It the “SIP” state 2108 changes to SIP_Refused,
appropriate messages will be displayed on the LCD screen
related to the SIP_Refused state.

From the “RingBack” state 2118, if the “SIP” state
becomes SIP_Connected, the Call_task state changes to the
“Talk” state 2116. When the Call_task state is in the “Talk”
state 2116, the Codec_task will configured as SpeechEncode
and SpeechDecade mode.

For incoming calls, while in the “Idle” state 2102, if the
“SIP” state 2108 is SIP_Invite, the Call_task state changes to
the “Ring” state 2114 and the Codec_task will be configured
as “ToneMode, RingTone.” When the Codec_task is config-
ured as “ToneMode, RingTone,” a ring tone will be played on
the loudspeaker. After the SIP state becomes SIP_Connected,
the Call_task state will change into the “Talk™ state 2116.
Otherwise, if the SIP state becomes SIP_Cancel, which hap-
pens if the caller gives up the call, the Call_task state returns
to the “Idle” state 2108.

While at the “Idle” state 2102, if the ENTER button is
depressed, the Call_task calls the Setting_task. When the
parameter setting program is finished, it will return to Call_
task.

US 9,413,585 B2

15

During Call_task execution, if the hook state indicates the
receiver is UNHOOK, or a system error is found, the Call_
task changes to the “Idle” state 2102, regardless of what the
previous state is (except the “Ring” state 2114).

In the preferred embodiment of the network appliance as
shown in FIG. 5, the key pad of the telephone has 17 keys for
providing user inputs and commands. The telephone key pad
includes 10 digit keys, two special keys and five function keys
are defined as shown in FIG. 22.

The Key_task is a loop delayed task which runs periodi-
cally, such as every 0.1 seconds. When started, Key_task first
calls the key() function. If the return value is not “-17, it
means a key has been pressed. Then, the KeyMap() function
maps the input binary key word to the ASCII key word. The
Key_task then sets the corresponding member of the
FuncKey structure. If the system is ready to accept the key
input (the KeyRegEnable is indicated), the input key word is
stored into the KeyBuf.

In addition, Key_task preferably supports four different
input modes: digit input mode, IP address input mode, alpha-
bet input mode, and list address input mode. Switching
among the four modes can be done by pressing the ENTER
button before dialing any number or alphabet when the hand-
set is picked up and a dial tone is heard. After input is com-
plete and the ENTER button is pressed, the input numbers
will be transferred to the current task (Call_task or Setting_
task) by a message pipe. If the Redial key is pushed, the task
will copy the previous input from the backup buffer, Key-
Backup, to the KeyBuf. Then the data will be transferred to
Call_task.

The operating system of the present network appliance
preferably supports a delayed task schedule scheme. The
delayed task is similar to the sleep() function in UNIX.
However, a delayed task can also be a persistent task execu-
tion from a periodic timer when the task’s repeating flag is set.
For delayed tasks, the process level software 1120 requires an
interval timer to provide a system tick. The system of FIG. 5§
uses the TMS320C32’s timerl, TCLK1, as the system timer
base.

The Clock_task is a looped delayed task which performs
real time clock and calendar functions. It serves as the general
clock to calculate and display the current time, including the
hour, minute and second. When a call is connected, it can
display the call duration. When the phone is on hook, current
year, month and date can also be displayed on the LCD.

Referring again to FIG. 11, the Network telephone soft-
ware of the present invention includes several low-level func-
tions that are included as part of the software ISR level. Some
of these low-level functions are I/O related functions, which
are used with the telephone’s 8-bit /O parallel port defined in
FIG. 24. The low-level, I/O related functions include: the
“Hook™ state monitor, Hookst(); the Key input availability
check and read, Key() handset and hands-free control, Hand-
Ser() Ethernet controller reset, ENET _reset() volume con-
trol, AmpControl() and software reset of the system.

The audio interface chip 136, which preferably takes the
form of an LM4830, can be used to control switching between
the handset and the hands-free mode. For example, the Hand-
Set() function can write a ‘0’ to the /O port when “hands-
free” mode is required or write a ‘1’ to the appropriate port
when “handset” mode is required.

The low-level functions of the present invention also
include the Ethernet controller interrupt ISR, c_int03(). The
global message structure for use with c_int03() is defined for
the state of the Ethernet controller as shown in FIG. 25.
Whenever a packet has been sent, or a received packet is
complete, the Ethernet controller will interrupt the DSP 122

10

15

20

25

30

35

40

45

50

55

60

65

16

to indicate the interrupt. The DSP 122 will read the transmis-
sion and receiving states from the Ethernet controller’s reg-
ister and then store the state into the above state structure.
This information can be checked by other tasks. In addition,
these messages are read after each packet transmission, Oth-
erwise, the Ethernet controller will be blocked.

As noted above, it is preferred that the present network
appliance of the present invention uses the RTP protocol to
transmit and receive speech packets in real time. The RTP
packet is encapsulated in an UDP packet. The IP_Send_task
and the RTP_In_task modules operate to create and parse
RTP packets. FIG. 26 shows an RTP header structure for RTP
packet processing.

When the IP_Send_task gets a request to send a RTP
packet, it first generates an Ethernet and UDP header. Next, it
adds the RTP header in the Ethernet packet transmission
buffer. Finally, the RTP data is copied into the RTP data area
and is sent over the data network.

FIG. 27 shows a data structure for use with a tone genera-
tion function, Tone_task(). The parameters described in FI1G.
27 are illustrated in the tone generation timing diagram of
FIG. 28.

Tone_task is a delayed task which can be executed about
every 0.1 second. It is used to count the tone active and stop
duration defined in the ToneType structure. Tone_task sets
ToneState to ACTIVE during burst and STOP during silence.
Different active and stop duration generates different tones.
They are: Dial tone, continuous tone (no stop); Busy tone,
burst 0.5 s and silence 0.5 see; Ring back tone, burst 2 see and
silence 4 sec; Ring signal, burst 0.8 sec twice in two seconds,
then silence 4 sec.

Preferably, a ToneGenerate() module generates a one
frame 400 Hz tone or a 2400 Hz ring signal defined by
“mode” parameter when ToneState is ACTIVE. Otherwise,
one frame silence signal is provided.

The network appliance of the present invention uses UDP
as its transport protocol for SIP, SIP_task is a looped task that
handles SIP signaling. Since the present network appliance
can be used either as a caller or as a callee, SIP_task operates
both as a UAC (User Agent Client) and a UAS (User Agent
Server).

FIG. 29 is source code which shows data structures used for
processing the SIP requests or responses in accordance with
the SIP protocol. Tstate is the state transition structure used in
SIP_In_task and SIP_task for SIP state transition, Parsed SIP
messages are in the data structure message_t. The structure
call is defined for each call and the total call entries are
defined by msg|MaxSipEntry].

FIG. 30 shows a state transition diagram of the SIP_task
operating as a client (e.g., a caller), When the SIP phone starts
a call, it works as a client. A call will be created via the
following steps: a call entry msg[CurrentIndex| is allocated
when the phone is picked up and the flag of the call is SET;
CreateSipCall() creates a SIP packet according to current
setting and dial inputs, wherein the SIP package is used as the
reference of the call and the us_state is set to UAC; SIP
Parse() generates the message structure (msg[Current
Index].m) for the call from above packet; the SIP_task will
check if there are any active calls—if there is a call (msg][i.]
flag is SET), SIP_task will create the corresponding request
according to the SIP specification and the SIP states will be
updated in SIP_task as shown in FIG. 30.

FIG. 30 shows an exemplary state diagram for client
(caller) operations, referred to as a UAC state transition dia-
gram of SIP_task. From an Initial state (step 3002) a Calling
state is entered and a SIP_task retransmits a SIP INVITE
request periodically (T1) until a response is received (step

US 9,413,585 B2

17

3004). Nominally, T1 is 500 ms initially and doubles after
each packet transmission. (Step 3006) T2 is nominally 32
seconds. If the client receives no response, SIP_task ceases
retransmission when T2 timer expires and SIP state will be
changed to Cancel (step 3008). If the response is provisional,
the client continues to retransmit the request up to seven
times. When a final response is received, the state will change
to Completed and a ACK will be generated (step 3010). When
the caller gives up, the state will changed to Bye state (step
3012). BYE requests are also retransmitted during the inter-
val of T1 until T2 expires for the purpose of reliable trans-
mission. The variable, SIP_Status, will be changed according
to the response received as shown in FIG. 31. For example, if
a 3xx response is received, SIP_task will initiate another call
to the redirected address. Other final responses can be dis-
played on the LCD.

When the network appliance receives a call, the SIP_task
functions as a SIP UAS (server). The incoming packets are
processed as follows: UDP_In_task accepts the incoming
UDP packet and sends the packets to SIP_In_task along with
its source IP address and port number. SIP_In_task processes
the packet according to the SIP specification and updates the
states accordingly. SIP_task will monitor the receiver state,
set and decrease the T1 and T2 timer of each call and update
the SIP states if necessary.

FIG. 32 illustrates an exemplary state transition diagram of
aSIPUAS. While the SIP_task remains at an Initial state (step
3205), it listens to the incoming SIP packets. If an INVITE
request is received, it generates a Ringing (180) response and
its state changes to Invite and the Sip_task module would
advance to a Proceeding step (step 3210). If a called party
picks up the telephone, the status changes to Picks Up and the
process advances to Success (step 3215), indicating a suc-
cessful call session has been established. If the called party
does not pick up, the status changes to Failure and the process
advances to the Failure state (step 3220). After success or
failure, the client will acknowledge the current status and
advance the process to the Confirmed state (step 3225). When
the calling party terminates the session, the status changes to
Onhook and the process advances to Bye (step 3230) indicat-
ing that the current session has been completed.

As set forth herein, the network appliance is a stand alone
device capable of initiating and receiving telephone calls on a
packet data network. While the stand alone architecture
described herein offers many attendant advantages, such as its
relatively low cost to implement, similar software architec-
ture and functional definitions described in connection with
the stand alone appliance 100 can also be provided on a PC
based telephone device. In such a case, a conventional per-
sonal computer having a microphone, speakers and suitable
network interface card, is provided with software to operate
consistently with the manner described above. Of course,
obvious changes are effected in this embodiment, such as the
user interface components and functions being performed by
conventional elements of the PC, e.g., the keyboard, monitor,
mouse and the like. A GUI interface to the telephone func-
tionality is provided by the software to enable the desired
telephony functions.

The network appliance of the present invention, in addition
to performing traditional telephony functions, can also pro-
vide a cost effective interface between the network and the
environment. While equipping sensors with Ethernet inter-
faces is not feasible, due to the large number of ports required
and the cost of the minimal hardware required, the network
appliance of the present invention can become the gathering
point for a number of digital and analog sensors. This is
accomplished generally by coupling the external sensor to the

25

35

40

45

18

network appliance via the conventional /O circuitry 135
which is coupled to the DSP 122. The I/O circuitry can take
the form of simple buffers, A/D converters, registers and the
like. This feature is particularly useful in environments that
have phones for security reasons, e.g., elevators, lobbies, shop
floors, garages, etc. Examples include: Passive infrared (PIR)
digital sensor for detecting the presence of people—this can
be used for automatically forwarding calls if nobody is in the
office or as part of a security or energy management system;
analog or digital light sensor to detect whether the office is
occupied; analog temperature sensor; smoke, carbon monox-
ide and radiation detectors; and contact closures for security
systems. Thus, the present network appliance provides a point
of system integration.

To provide further enhanced I/O capability, the /O cir-
cuitry can be compatible with local control protocols such as
the X10 and CEbus protocols which are recognized standards
for controlling line-powered devices such as lighting or appli-
ances. Adding such and interface to the phone provides for
network-based control of such devices.

FIG. 33 illustrates a system employing the present network
appliance for establishing calls between two or more parties
on the network. The system generally includes one or more
stand alone network appliances 100, such as described above.
In addition, the system can also include PC based telephony
devices 3320, such as a network enabled PC operating suit-
able network telephony software which is protocol compliant
with the network appliance 100. Each telephony endpoint can
be referred to as a node and has a specific SIP address. By
employing this specific address, any node acting as a calling
party (client) can directly initiate a call session with any other
node on the network (server).

The system preferably also includes a redirect server 3325
which can be accessed by the various nodes on the network to
provide enhanced services, such as a directory service, call
forwarding, call branching, call messaging and the like. For
example, a calling party wishing to initiate a call to JOHN
SMITH can enter the SIP address for that person if it is
known, such as sip:john.smith@work.com. If, on the other
hand, the calling party does not know the SIP address of the
party, the calling party can contact the redirect server 3325
with a request to begin a session with JOHN SMITH. The
redirect server includes databases with registration informa-
tion for various parties and can return the SIP address to the
calling party or forward the call request to the proper SIP
address. In addition, the called party may have multiple sip
addresses such as john.smith@home, john.smith@office,
john.smith@lab and the like. The redirect server can provide
a session initiation signal to each of these addresses and
establish a connection between the calling party and the first
contacted node that responds to the initiation request. Simi-
larly, parties can periodically register with the redirect server
to indicate the current SIP address where they can be con-
tacted (call forwarding feature).

The network appliance 3305 can be configured to interface
to one or more sensors 3310. Signals from the sensors are
received by the network appliance 3305 and can be sent along
the network to a desired network node. The signals from the
sensors can be detected periodically by a timer in the network
appliance and sent to a SIP address stored in memory. Alter-
natively, the sensor signals can be measured by the network
appliance 100 based on a command received from another
node (polled by a remote network node) or can be measured
based on a received interrupt signal indicating a change of
state of the sensor (interrupt driven). For example, the net-
work appliance 100 can be used as a security system commu-
nication device which reports the status of various security

US 9,413,585 B2

19

sensor points to a central monitoring station. In such a case,
the appliance can periodically check the status of the con-
nected sensors, such as door sensors, fire sensors, passive
infrared detectors and the like, and report to a central station
node the current status. In the event of a status change that
would indicate an alarm condition, the appliance 100 could
generate a call session with the central station and report this
condition as well Of course, the same appliance which is
acting as an alarm communicator can also provide full tele-
phony functions as well. In addition, while a simple security
application was described, it will also be appreciated that
various other data collection and control applications gener-
ally known as SCADA (site control and data acquisition), can
be implemented using the present network appliance 100.

To maintain lifeline service during power outages, the net-
work appliance of the present invention can be equipped with
a rechargeable battery, possibly integrated into a wall trans-
former.

As many locations are currently equipped with only one
Ethernet interface, the network appliance of the present
invention should provide a two-port Ethernet hub, with an
external RJ-45 interface. This provides for simultaneous
operation of both the telephony device and network enabled
computer.

In addition to audio data, the present network appliance can
also receive and transport video data. For example, a video
input interface, either analog or through a USE (Universal
Serial Bus) can be operatively coupled to DSP 122 to imple-
ment this feature.

The present network appliance 100 can also be coupled to
a suitable wireless Ethernet interface to allow the equivalent
of a cordless phone.

The following protocols can be added to the present net-
work appliance 100 to provide expanded functionality:
DHCP and RARP for automatic assignment of IP addresses;
IGMP for subscribing to multicast groups; RTSP for retriev-
ing voice mail and distinctive ringing signals; SAP for listen-
ing to announcements of multicast “radio” events; and DNS
for name resolution (subject to available program memory
space).

In addition to basic telephony operations, the present net-
work appliance can also provide high level telephony func-
tions. For example a “Do not disturb” feature can be provided
that automatically forwards calls for a given duration to a
designated location as specified by a SIP address input by the
user. Hach time the feature is selected, such as by depressing
a button on the user interface, the time increases by a prede-
termined interval (e.g., 15 minutes).

“Call logging” can also be provided wherein the SIP
address and related information regarding incoming calls is
logged by storing the information in memory, with the ability
to call back the calling party by scrolling through the list and
selecting the SIP address of the caller from the log by user
interaction via the user interface subsystem 160.

The network appliance can also include an “Automatic
address book.” Through user input or via a server connected
on the network, the network appliance can acquire a speed
dial list or a list of names stored in its local memory which a
user can scroll through (using the SIP “multiple choices”
response);

An “Interface to voice mail system” feature can display all
unanswered calls that have come in, including the time of call,
the caller, the subject and urgency of the call and whether the
caller left voice mail. Calls can be ordered chronologically or
by urgency. The call display preferably features five soft
buttons: to delete the entry, to move forward and back through
the list, to return the call and to retrieve the message.

10

15

20

25

30

35

40

45

50

55

60

65

20

“Distinctive ringing” is a feature wherein the appliance 100
is programmed to announce certain callers by a distinct sound
clip, such as a distinctive ring, melody or the name of the
caller. In this case a small database associates a caller, or a
class of callers (e.g., friend, customer, urgent) to a particular
selected ring response. The sound clip is played either from
memory or retrieved from a server;

“Call forwarding” is a further feature which can be imple-
mented in the appliance 100. Typically, calls are forwarded by
the proxy redirect server. However, the network appliance
100 can also perform simple forwarding itself, as described
above for the “do not disturb” button. The redirection may
take the form of calling the phone from another phone with a
REGISTER command, to implement follow-me calls. Also,
automatic forwarding of calls from certain domains or during
certain hours is readily implemented without use of a redirect
server.

“Intercom” mode is a feature where incoming calls are
“picked up” automatically, with the microphone disabled
until a push-to-talk button is pressed or the receiver is lifted.
This can also be used as part of a security public address
system.

“Baby monitoring” features allow the network appliance to
act as a remote audio monitoring device. For example, on
receipt of an incoming call, the network appliance 100 is
activated with the speaker disabled but with the microphone
automatically enabled such that the calling party can listen to
the environment where the called appliance is located. This
feature can be selectively engaged, such as by a predeter-
mined code or caller identity;

An “Internet radio” feature allows the network appliance
100 to automatically play radio stations supplied by a local
RTP multicast server or other streaming media source when a
call is not being received or initiated. The appliance 100 can
listen for SAP announcements and can display the station list
on the display, with soft buttons. Any incoming phone call
interrupts the current radio program.

The present network appliance can also maintain a “Callee
list” If a previous call was successful, the callee’s address is
automatically entered into a portion of memory used as a local
guide-dial list. When this party is to be dialed again, the callee
can be selected by the upward or downward key from the
callee’s list. This is generally a FIFO type memory structure
which automatically purges old entries and replaces them
with more current entries; and

“Redial,” which allows single key dialing of either the last
number dialed or the last callee.

In addition, “Speech processing enhancement,” such as
silence suppression, comfort noise generation, and echo can-
cellation can also be included in the present network appli-
ance in a manner which is well known in the telephony art.

Thus, a network-based telephone that is a stand-alone
“Internet appliance” that allows the user to make phone calls
within a local area network (LAN) or across the Internet has
been disclosed. Its core is a single digital signal processor
(DSP) (a microcontroller optimized for processing audio and
video data). It provides services that are a superset of those of
a regular telephone, but connects and Ethernet data network
instead of to the PSTN (Public Switching Telephone Net-
work), Since Ethernet running at 10 Mb/s can use the same
twisted-pair wiring used for analog and digital phones, the
Packet data network telephone does not require rewiring cus-
tomer premises. A minimal system consists of two Packet
data network telephones connected by an Ethernet cross-over
cable. A multi-line basic PBX can be implemented consisting
of any number of Packet data network telephone connected to
an Ethernet hub or switch. This “PBX” can scale to any

US 9,413,585 B2

21

number of phones, simply by adding Ethernet capacity and
ports. The Packet data network telephone shares the Ethernet
with other LAN services. In almost all cases, voice traffic will
be a small fraction of the network capacity. (A single voice
call consumes about 16 kb/s of the 10 Mb/s capacity.) The
Packet data network telephone offers voice communications,
implementing the customary features of PBXs. However, the
present network appliance may use a server located in the
LAN or the Internet to provide additional functionality, such
asuser location and directory services, call forwarding, voice
mail, attendant services.

A PBX based on the current network appliance can reach
traditional phones through an Internet Telephony Gateway
(ITG). Such a gateway connects to the PSTN using either
analog lines, ISDN basic or primary rate interfaces or digital
trunks (such as T1/E1). ITGs have recently been introduced
as commercial products, with capacities of one to about 240
lines.

Although the present invention has been described in con-
nection with particular embodiments thereof, itis to be under-
stood that various modifications, alterations and adaptions
may be made by those skilled in the art without departing
from the spirit and scope of the invention. It is intended that
the invention be limited only by the appended claims.

The invention claimed is:

1. A system for digital signal processing over a network,

comprising:

a first network device and a second network device, each
network device comprising a digital signal processor
and one or more memory devices coupled to said digital
signal processor, the one or more memory devices com-
prising:

a first layer of instructions stored in said one or more
memory devices of said digital signal processing sub-
system operable to provide interrupt services and low-
level functions,

10

20

25

30

35

22

a second layer of instructions stored in said one or more
memory devices of said digital signal processing sub-
system comprising an operating system and instruc-
tions operable to perform process level functions, and

a third layer of instructions stored in said one or more
memory devices of said digital signal processing sub-
system operable to perform application-specific tasks
and high-level functions,

wherein at least one of the network devices operates as a

User Agent Client (UAC) to detect and initiate call ses-

sions and perform call session control according to Ses-

sion Initiation Protocol (SIP) functions and at least one
of the network devices operates as a User Agent Server

(UAS) to detect and receive call sessions and perform

call session control according to SIP functions.

2. The system according to claim 1, wherein the first net-
work device operates as a UAC and the second network
device operates as a UAS.

3. The system according to claim 1, wherein the first net-
work device operates as a UAS and the second network device
operates as a UAC.

4. The system according to claim 1, wherein the first net-
work device operates as a UAC and as a UAS.

5. The system according to claim 4, wherein the second
network device operates as a UAC.

6. The system according to claim 5, wherein the second
network device further operates as a UAS.

7. The system according to claim 1, wherein the third layer
of instructions includes at least one of Session Initiation Pro-
tocol (SIP) functions for detecting an SIP state, Real-Time
Transport Protocol (RTP) functions for providing real-time
audio data transport, and Address Resolution Protocol (ARP)
functions to resolve alphanumeric addresses.

8. The system according to claim 7, wherein the third layer
of instructions includes SIP functions for detecting an SIP
state, and wherein the SIP state comprises idle or busy.

#* #* #* #* #*

